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1 Introduction

The direct costs of climate change are expected to be large in magnitude and broad in reach, affect-

ing agriculture, economic growth, migration, labor productivity, and mortality (Mendelsohn, Nord-

haus, and Shaw, 1994; Schlenker, Hanemann, and Fisher, 2005; Deschenes and Kolstad, 2011;

Schlenker and Roberts, 2009; Dell, Jones, and Olken, 2012; Lobell, 2014; Graff Zivin and Neidell,

2014). Mitigating behaviors may lessen some contemporaneous costs and allow for adaptation to

climate change in the longer term (Barreca et al., 2016; Burke and Emerick, 2016; Hultgren et al.,

2022). Traditionally, adaptations are modeled as internal costs and benefits(Hultgren et al., 2022;

Carleton et al., 2022). However, these actions may impose externalities that are disproportionately

borne by those least able to engage in mitigating behavior. Little is known about the extent to

which behaviors taken to reduce the damages of weather shocks impose costs on others.

We study this in the context of groundwater in California by evaluating if mitigating be-

haviors taken in response to heat and surface water scarcity lead to groundwater depletion and

drinking water well failures. Agriculture is almost exclusively irrigated in California, and farmers

rely on surface water supplies conveyed via canals and rivers and groundwater pumped from wells.

Groundwater has operated as a critical mitigation strategy to temper the agricultural costs of sur-

face water reductions and heat (Schlenker, Hanemann, and Fisher, 2005, 2007; Edwards and Smith,

2018). Traditionally, this common pool resource has been managed under open-access conditions,

leading to inefficiencies from over-extraction (Hotelling, 1931; Ayres, Meng, and Plantinga, 2021).

Dependence on this groundwater during times of scarcity may impose additional costs on both cur-

rent and future users.

To date, the focus of groundwater externalities has either been in the theoretical domain or

on quantifying the pumping and stock externality imposed upon neighboring and future agricul-

tural users (Provencher and Burt, 1993; Roseta-Palma, 2002; Brozović, Sunding, and Zilberman,

2010; Pfeiffer and Lin, 2012; Edwards, 2016; Merrill and Guilfoos, 2017). Less well understood
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are the acute and contemporaneous costs that groundwater pumping may exact on drinking water

supplies in surrounding communities. Many rural households rely on private groundwater wells

for drinking water purposes. Relative to their agricultural counterparts, domestic wells are shallow,

and as a result, susceptible to running dry as groundwater tables decline. In California, domestic

wells are also concentrated in disadvantaged communities comprised of low-income households

and people of color.1 Access to drinking water supplies among disadvantaged communities is a

growing concern, and it remains unanswered how drought- and heat-induced groundwater pump-

ing jeopardizes drinking water availability (Pauloo et al., 2020).

This paper quantifies how behavior by farmers, in response to annual fluctuations in heat

and surface water scarcity, impacts the depth to the groundwater table and access to drinking wa-

ter for domestic well owners. Our conceptual framework posits that surface water curtailments

and heat will induce agricultural users to respond on the intensive and extensive margins, extract-

ing more water from existing wells and building new and deeper groundwater irrigation wells.

These responses will impact access to drinking water supplies through the channel of groundwater

scarcity. We empirically test these hypotheses by first capturing the gross effect of these shocks on

agricultural groundwater demand as measured by changes in the depth to the water table. Then,

we evaluate the reduced-form relationship of heat and surface water scarcity on domestic well

failures, assuming this operates through the channel of groundwater table depletion. Finally, we

evaluate agricultural producers’ extensive margin of response through the drilling of new agricul-

tural groundwater wells and back out the intensive margin of response.

Our empirical approach uses year-to-year variation in local surface water supplies and

weather to compare drinking and agricultural water access under environmental shocks. To do

this, we build a geocoded well-level dataset spanning 28 years that is comprised of more than

180,000 domestic and agricultural wells and, on average, about 20,000 groundwater monitoring

1California’s San Joaquin Valley contains the majority of domestic wells in the state. It is a region that is over 50%
Latina/o and contains some of the highest rates of poverty and food insecurity in the state.
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wells per year. We combine these data with district-level weather and surface water supply data

from over 400 water districts between 1993 and 2020. These detailed data allow us to deploy an

instrumental variables panel data approach that exploits annual fluctuations in temperature and sur-

face water supplies, and controls for local fixed differences such as historical water rights and state

level shocks such as recessions that may impact water access and agricultural producers’ decision

making.

A first set of results indicates that reductions in agricultural surface water supplies and ex-

treme heat lower the depth to the groundwater table. A recent drought in 2021 caused surface

water supplies to reduce by as much as 0.7 acre-feet (AF) per crop acre. Our results indicate

that an annual surface water curtailment of this size would cause a 2-foot or a 3.2% reduction in

groundwater levels across California’s aquifers in the subsequent year. A similar effect is found

for cumulative days of extreme heat. Heat shocks, equal to 2021 levels (an additional 23 harmful

degree days), caused an 8-inch reduction in the groundwater table. These reductions in groundwa-

ter availability capture the private cost incurred by farmers to mitigate the damages from heat and

surface water curtailments and the external cost imposed on future and contemporaneous users of

this common-pool resource, including households that access drinking water from domestic wells.

This finding brings a new data point on the extent to which adaptation will buffer against

the agricultural costs of climate change. Extensive work shows that agricultural outcomes are

responsive to fluctuations in weather (Deschênes and Greenstone, 2007; Hagerty, 2021). However

evidence on the extent to which adaptation can mitigate these costs is mixed, with some studies

pointing to little evidence of adaptation to climate change (Burke and Emerick, 2016; Auffhammer,

2018) and other work suggesting that in the long-run the costs may be cut in half (Hultgren et al.,

2022). The latter may occur if agricultural producers adopt new technologies, change the location

and types of crops grown, or adjust the quantity and composition of inputs (Sloat et al., 2020;

Rosa et al., 2020; Aglasan et al., 2023). In the context of California, we show that the open-access

management of a common-pool resource may result in the opposite being true. In the short-run,
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heat shocks and surface curtailments will deplete the available groundwater stock, suggesting that

in the long-run the costs of climate change may be amplified if farmers cannot rely on groundwater

to buffer against these shocks (Hornbeck and Keskin, 2014; Auffhammer, 2018; Perez-Quesada,

Hendricks, and Steward, 2023).

A second central result demonstrates that increases in extreme heat and reductions in sur-

face water availability lead to drinking water well failures in low-income and non-white commu-

nities. Our estimates indicate that the surface water reductions and the increase in harmful degree

days experienced during the 2021 drought led to a 4 and 5 percentage point increase in the proba-

bility of domestic well failures, respectively. A decomposition reveals substantial heterogeneity in

who experiences well failures. Low-income and communities of color bear a substantial share of

well failures and their associated costs.

Lastly, to explore the mechanisms underpinning the estimated declines in groundwater sup-

plies, we first empirically quantify how new agricultural well construction responds to heat and

surface water scarcity, and then back out the intensive-margin response. Surface water reductions

cause farmers to respond along the extensive margin, with the reductions of the magnitude experi-

enced in 2021 resulting in the construction of 320 agricultural groundwater wells per year. Using

our conceptual model and empirical estimates, we then back out that the intensive margin response

and find that these curtailments leads farmers to pump an additional 19 AF from each existing well.

Heat also leads to increased groundwater extraction. We find that an additional 23 harmful degree

days causes farmers to construct 300 additional groundwater wells and pump 9 AF more from each

existing well. This latter result underscores that even if surface water supplies remain unchanged,

warming temperatures will alter water resources through increased demand.2

Our results bring empirical evidence to bear on how climate change - through the chan-

2While climate projections indicate increased year-to-year variation in rainfall, projections on the total amount of
precipitation are less clear (Jessoe, Mérel, and Ortiz-Bobea, 2018). In the context of California’s water infrastructure,
total surface water supplies for agricultural use in California are expected to decrease by 25% by 2060 (Wang et al.,
2018).
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nels of warming temperatures and more variable and scarce surface water supplies - will affect

externalities arising from the open-access management of common pool resources. A longstand-

ing literature documents that open access conditions lead to too much extraction of groundwater

at too quick a pace (Hotelling, 1931; Pfeiffer and Lin, 2012; Ayres, Meng, and Plantinga, 2021).

Less clear is how climate change interacts with these externalities. Recent work on the water re-

source impacts of climate change have focused on the link between climate and irrigation, showing

increases in irrigation as farmers seek to buffer against warming temperatures and more variable

precipitation (Taraz, 2017; Taylor, 2023). Our findings highlight that the externalities from ground-

water consumption - as measured by annual changes in depth to the water table and domestic well

failures - are exacerbated by climate change and unequally borne by disadvantaged populations.3

This paper also adds a new dimension to our understanding about inequities in exposure

to environmental costs (Banzhaf, Ma, and Timmins, 2019). A recent literature documents that

disadvantaged communities bear a disproportionate burden of pollution and its associated harms,

and seeks to identify the distributional implications of environmental regulations intended to re-

duce pollution (Cain et al., 2023). This work highlights a general reduction in pollution disparities

over time and decomposes the relative contribution of command and control and market-based ap-

proaches in reducing this gap (Fowlie, Holland, and Mansur, 2012; Bento, Freedman, and Lang,

2015; Shapiro and Walker, 2021; Hernandez-Cortes and Meng, 2023). Less is known about the

equity implications of an open-access management regime, which governs many common-pool re-

sources.4 Our work implies that inequities arise from an open-access management regime, specif-

ically that mitigating behaviors by those with access to capital will impose costs on disadvantaged

groups.

3Taylor (2023) also quantifies the externality at a global scale from warming temperatures by using GRACE satel-
lite measures to compare changes in thickness over a 12-year period.

4Recent work highlights the net benefits of markets relative to open-access management in the context of California
groundwater (Ayres, Meng, and Plantinga, 2021).
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2 Agricultural Water in California

We evaluate the external costs of mitigating behaviors in the context of California water, a setting

where agriculture accounts for 80% of consumptive use, droughts are increasingly frequent and

severe, and access to reliable drinking water supplies poses a concern in many rural communities.

California is a leading producer of agricultural products in the U.S. and globally, comprising over

a third of the nation’s vegetables and almost three-quarters of its fruits and nuts (California Depart-

ment of Food and Agriculture, 2020). One reason for the state’s large market share in agricultural

production is irrigation. Almost all agricultural acres are irrigated, with over half of the farms

using a mix of surface and groundwater sources.

Within the state, agricultural production is heavily concentrated in the San Joaquin Valley

(SJV) in central California. The counties located in the SJV are primarily rural and experience

some of the highest poverty rates in the country. Many of these households utilize private domestic

groundwater wells for drinking water purposes. These domestic wells are relatively shallow, and

as a result, are vulnerable to weather driven declines in groundwater levels.

Surface Water Irrigation

Surface water supplies, which account for approximately 60% of irrigation supplies in an average

year, exhibit substantial heterogeneity over time and across irrigation districts. Annual state-level

surface water supplies are largely determined by fall and winter precipitation in the Sierra Nevada

and other local mountain ranges. As the snowpack melts, this runoff is temporarily captured and

stored in reservoirs and later delivered to farmers and irrigation districts through a network of

canals. Large inter-annual swings in precipitation are endemic to California and lead to meaningful

variation in in surface water supplies from year to year.

A complex allocation system dating back to the early 1900s guides the assignment of water

across users, and introduces cross-sectional heterogeneity in surface water rights. A user, defined
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as an irrigation district, will hold an appropriative right to divert water directly from a nearby river

or stream and/or possess a long-term contract to water deliveries provided by a state or federal

water project.5 The state operated State Water Project and federally run Central Valley and Lower

Colorado River Project comprise the three main surface water projects. Water contracts specify a

maximum annual volume of water supplied and a contract priority. This array of water rights and

water projects dates back more than 40 years and created an entitlement system where neighboring

water districts will obtain surface water from different sources under different contract conditions.

Within an irrigation district, large fluctuations exist in yearly water project deliveries. Each

year the government agency managing a water project announces allocation percentages for each

contract type. These percentages are based on reservoir levels, environmental conditions and

weather and determine how much of the maximum volume an irrigation district will receive. Allo-

cation percentages are announced in advance of planting decisions and are largely based on winter

precipitation and reservoir levels. There are 13 different contract types, where the allocation per-

centage a district receives will differ based on the water project and priority order. As a result,

within a year different districts will receive different allocation percentages, depending on the con-

tract type and their appropriative water rights.

The actual surface water deliveries that a district receives can differ from allocations in a

few ways. Irrigation districts can purchase additional water mid-season on the spot market, pump

water from groundwater banks, or reserve water for up to a year in response to environmental

conditions.

Groundwater Irrigation

Groundwater has traditionally acted as a buffer to fluctuations in surface water supplies. To

counter the reduced surface water supplies that accompany droughts, dependence on groundwater

5Most agricultural water rights and contracts are held by irrigation districts – local government agencies – which
then supply water to farms within their jurisdictions. Within each district, water is typically rationed by quantity rather
than price, and by custom or law water is distributed uniformly to producers on a per-acre basis.
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increases, accounting for up to 80% of water supplies during droughts.

Historically, groundwater has been managed under an open-access regime, with agricultural

water use neither monitored, measured nor priced. Owners of land have the right to drill wells

and pump groundwater with few restrictions. The open-access nature of groundwater has led to

declining groundwater levels, higher pumping costs, and other negative consequences (Provencher

and Burt, 1993; Brozović, Sunding, and Zilberman, 2010; Edwards, 2016). For example, in the San

Joaquin Valley of California groundwater levels in some basins have experienced over a 100 foot

reduction in the past 10 years (Department of Water Resources, n.d.). Partly in response to these

concerns, in 2014 California passed historic groundwater regulation - the Sustainable Groundwater

Management Act (SGMA) – with the aim to sustainably use and manage groundwater by 2042.6

The primary barrier to increased groundwater use on the extensive margin is the cost to

construct a well. The fixed cost varies widely based on the completed drilled depth and intended

use. Residential domestic wells are typically between 100 and 300 ft deep and cost approximately

$10,000. Agricultural wells are drilled between 300 and 500 ft deep on average and cost about

$75,000, but can cost upwards of $300,000 for large wells (California State Board of Equalization,

2023). They also are drilled with a wider diameter than residential wells to allow for higher flow

rates. New wells are required to be reported to the DWR and are typically constructed in under a

week (Central Valley Flood Protection Board, 2020).

Drinking Water in Rural Communities

While most individuals in California receive residential and drinking water from community water

systems, between 3.4 to 5.8% (or 1.3 to 2.25 million) of individuals obtain drinking water from

domestic wells.7 Private domestic well users draw groundwater from aquifers that are shared with

6Most SGMA sustainability plans were developed and will be enforced by local groundwater sustainability agen-
cies (GSA) starting in 2022, after our sample of study. There remains no direct restrictions on the drilling of ground-
water wells in these plans.

7Community water systems are public water systems with over 15 connections and serve greater than 25 people.
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domestic and agricultural users. When compared to agricultural wells, domestic wells are shallow

and as a result more susceptible to running dry as groundwater tables decline. Dry wells impose

substantial costs on households, either through the costly construction of new, deeper wells or the

regular purchasing of alternative water sources, like bottled water.

As shown in Figure A2, which maps the location of domestic wells throughout the state,

these private drinking water wells are concentrated in the agricultural centers of the state, and in

particular the San Joaquin Valley. 8 These areas also comprise some of the most economically and

socially vulnerable communities in California. Populations in the San Joaquin Valley are 50.2%

Hispanic (compared to national average and 18.9%) and 23.2% of households are below the federal

poverty line (compared to a national average of 12.9%). Private well failures are also concentrated

in relatively low income, rural and non-while communities. This is highlighted in Figure 1 which

plots the proportion of reported well failures by income, populations of color and agricultural

density.

Impacts of Climate Change in California

Water scarcity in California is expected to only be exacerbated by climate change. While climate

models project only modest changes in the mean annual precipitation, the amount of water avail-

able in reservoirs and canals for irrigation is projected to be reduced by 25% by 2060 (Wang et al.,

2018). The latter is partly due to increased precipitation volatility and extreme drought risk (Diff-

enbaugh, Swain, and Touma, 2015; Swain et al., 2018), and insufficient infrastructure to conserve

water in reservoirs in the wettest years. Warming temperatures also increase crop demands for

water. The implication of this is that even if surface water supplies do not change, extreme heat

will lead farmers to demand more water for irrigation (Rosa et al., 2020).

To date, the estimated impacts of climate change on California agriculture are mixed. The

8Deteriorating drinking water quality is also a concern for many of these users, especially since these water sources
are outside the jurisdiction of the SDWA.
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Figure 1: Probability of Well Failure by Local Demographics and Well Characteristics

Note: Figure displays the mean probability of domestic well failure for all domestic wells in Cal-
ifornia partitioned by above and below median values for socioeconomic, agricultural, and well
characteristics. Demographic data come from IPUMS NGHIS (Manson et al., 2022) and are as-
signed at the census tract levels where the domestic well is located. Low-Income % is the percent
of households living below the Federal income thresholds by family size. Error bars report the
95% confidence intervals from a t-test of the well failure probabilities by demographic sub-group.
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earliest estimates ranged from negligible effects to profits of up to 15% (Mendelsohn, Nordhaus,

and Shaw, 1994; Deschênes and Greenstone, 2007). Others have estimated negative impacts

when accounting for water availability and crop quality, especially among fruits and vegetables

(Schlenker, Hanemann, and Fisher, 2007; Smith and Beatty, 2023). Historically, direct climate

damages have been mitigated through adaptive behaviors by farmers (Burke and Emerick, 2016;

Hagerty, 2021), like increased irrigation. These behaviors may explain why damages were calcu-

lated to be minimal in earlier studies. However, these mitigation channels may be unavailable in

the future either due to groundwater scarcity or regulation that curbs its over-use. This implies that

direct climate damages may be significantly worse in the future as water becomes more scarce.

3 Conceptual Model

We develop a conceptual framework to decompose farmers’ response to heat and surface water

scarcity, and the subsequent impacts of this behavior on groundwater levels and access to drinking

water. Formalizing the relationship between farmer decisions and depth to the water table allows

us to quantify the intensive margin response to heat and surface water shocks as a function of

estimated demand parameters and observables.

Let gross groundwater consumption for a representative farmer, denoted by C, equal the

product of the total number of wells, w, and the average amount of water pumped per well, q.

Farmers choose the number of wells to construct and how much groundwater to pump from each

well. These decisions are functions of both surface water (s) - a substitute for groundwater - and

extreme heat (h):

C(s,h) = w(s,h)×q(s,h) (1)

Groundwater consumption in a year impacts the end of year water stock. If annual groundwater
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consumption exceeds recharge, R(s,h), then the stock of water in the aquifer declines and the depth

to the remaining groundwater stock increases. The depth to the water table (DTW ) is given by:

DTW (s,h) = DTW0 +κ ×C(s,h)−R(s,h), (2)

which depends on the starting depth to the water table, DTW0, consumption, and recharge. The

effect of an acre-foot of consumption on the depth to the water table is a direct function of the

geological characteristics of the aquifer. This is captured by a constant multiplier, κ .9

Assume that the farmer experiences a surface water (or heat) shock in a given year, ds (dh).

The short-run change in DTW from this shock can be decomposed into three channels:

dDTW
ds

(s,h) = κ
[∂w

∂ s
(s,h)×q(s,h)+

∂q
∂ s

(s,h)×w(s,h)
]
− ∂R

∂ s
(s,h). (3)

First, farmers may respond through the extensive margin by drilling new irrigation wells: ∂w
∂ s (s,h).

Second, farmers may react along the intensive margin, extracting more groundwater from existing

wells: ∂q
∂ s (s,h). Lastly, a decrease in surface water irrigation (or an increase in evaporation due

heat) will lower recharge, ∂R
∂ s (s,h), since there will be a decrease in the volume of water that drains

through the soil into the aquifer below.

This conceptual framework provides us with a pathway to empirically recover lower bounds

of the intensive and extensive margins of response to surface water and heat shocks within a single

year. In our empirical model, we directly estimate dDTW
ds (s,h), the change in groundwater levels

due to surface water shocks, and the extensive margin, ∂w
∂ s (s,h). We then back out the intensive-

9Groundwater aquifers are porous rock and sediment formations that store groundwater. The volume of water an
aquifer can hold varies depending on porosity and sediment type. For highly porous aquifers, less total area is required
to hold the same amount of water relative to a less porous aquifer. κ captures the inverse of hydrologic storativity of
an aquifer. Storativity measures the hydrologic yield of an aquifer, and hydrologic yield is defined as the proportion
of space that water can occupy within an aquifer. As an example, a storativity value of 0.12, which is typical in
California’s Central Valley Aquifer (Department of Water Resources, 2020), indicates that 12% of the aquifer can hold
water. The other 88% is composed of porous rock and sediment.
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margin effect, ∂q
∂ s (s,h), under given assumptions.10 This allows us to identify the gross effect of

climate shocks as captured by changes in depth to the water table, and decompose the mecha-

nisms behind this effect. We extend this model in section A.2 to incorporate persistent impacts on

groundwater levels over future years.

One external damage of declining groundwater tables is well failures. As the water table

deepens, shallow drinking water wells may run dry and fail, requiring the well owner to drill new,

deeper wells or rely on water from costly alternative sources. Define the probability of well failure,

F , as:

F = F(DTW ) = F(DTW (s,h)) (4)

When a surface water shock occurs, there is a change in the probability of well failure :

dF
ds

=
∂F

∂DTW
∂DTW

∂ s
(5)

Empirically, we shed light on the reduced form effect, dF
ds , by evaluating the extent to which

changes in surface water scarcity and heat lead to a lowering of the groundwater table, and ul-

timately household well failures.

4 Data

Panel data on surface water deliveries and allocations, groundwater levels, and well construction

and failures form the primary dataset for this analysis. We supplement these data with additional

information on local weather. Table 1 provides summary statistics and lists the cross-sectional unit

of observation for each variable.
10As discussed in the results, we calculate average values of q and w based on our data and California agricultural

statistics, and impose a hydrologic values for κ and ∂R
∂ s (s,h) consistent with California aquifers.
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Table 1: Summary Statistics

Unit Count Mean SD Min Max
Outcomes:
New Ag Wells DAUCO 10,416 11.1 19.4 0 316
Depth to Groundwater (ft) Monitoring Well 575,410 62.9 80.4 0 2,714.1
∆DTW Monitoring Well 575,399 0.3 6.1 -58.7 56.3
Probability of Domestic Well Failures Domestic Well 473,940 0.03 0.16 0 1
Independent Variables:
Ag SW Allocation (AF/crop acre) DAUCO 9,660 2.3 2.04 0 10
Ag SW Deliveries (AF/crop acre) DAUCO 10,416 2.2 1.9 0 10
Harmful Degree Days DAUCO 9,996 97.2 86.9 0 622.3
Growing Degree Days DAUCO 9,996 3,535.4 659.9 632.5 5,813.04
Annual Precipitation (mm) DAUCO 9,996 350.3 233.4 11.4 4,668.9
Crop Acres DAUCO 10,416 169,741.5 131,332.9 .2 502,692.3
Note: The table reports the number of observations, units of and measurement, mean, standard deviations (SD), minimum and maximum for
each outcome and explanatory variable. Mean and SD statistics are weighted by crop acres. Water is measured in acre feet (AF).

Surface Water Allocations and Deliveries

Panel data on surface water deliveries and allocations measure our covariate of interest, surface

water availability. These data were obtained from Hagerty (2021) and provide yearly measures of

water deliveries and allocations from the Central Valley Project (CVP), State Water Project (SWP),

Lower Colorado Project, and surface water rights from 1993-2020.11 We spatially aggregate these

data to the Detailed Analysis Unit by County (DAU by Co or DAUCO) and use the DAU as the unit

of observation for surface water deliveries, allocations, and agricultural well construction. DAUs

are a construct of The California Department of Water Resources, and delineated by dividing the

state’s hydrologic regions and planning areas into smaller geographic areas for agricultural land use

and water balance analysis. Water allocations measure how much water a DAUCO should receive

based on rights and contracts, and deliveries reflect how much water a DAUCO actually receives.

Our final measure of surface water supplies captures the volume of surface water delivered in AF

per crop acre (AF/acre) in the DAUCO.12

11Surface water delivery data for the CVP are first available from the U.S. Bureau of Reclamation in a digitized
format in 1993. Therefore, these variables determine the temporal length of our final panel.

12We standardize water allocations and deliveries by dividing them by cropland acres in each DAUCO. There are
a number of reported extreme values of water allocations and deliveries, likely due to measurement error. To account
for this, we Winsorize this variable at 10 AF/acre.
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Figure 2 displays the variation in surface water allocations across the 390 DAUCOs over

three years: 1994, 2006, 2015. In relatively wet years, such as 2006, each DAUCO receives 100%

of its water allocation. In drought years, such as 1994 and 2015, some DAUCOs experience water

curtailments based on contract types and senior rights. This occurs because of weather-induced

reductions in surface water availability. This figure makes clear that adjacent water districts can

receive very different allocations, and that these differences in allocations vary year to year. Our

empirical approach will exploit within district variation in surface water availability after netting

out aggregate state shocks.

Depth to the Water Table

Monitor level measures of the depth to the water table are available from 20,000 monitoring wells

between 1993 and 2020. Depth to the water table measures come from two sources: the State Water

Resources Control Board’s Groundwater Information System and DWR’s Periodic Groundwater

Level Measurement.13 Within each monitor-year, we select a single date to measure the depth to

the water table. We choose the reading closest to March 15 of the subsequent year (e.g. March

15, 2016 to measure the 2015 end of the year groundwater depth), since the water table will reflect

the cumulative effects of groundwater pumping and recharge in the preceding year. Year-to-year

differences in monitor-level depth measure the change in the depth to the water table.14

As shown in Table 1, groundwater levels decline by approximately 4 inches per year on

average. This statistic, however, masks substantial temporal and spatial heterogeneity in ground-

water levels. Figure 3 illustrates the change in depth to the groundwater in each DAUCO in three

13Figure A3 plots the location of each unique monitoring well in our sample and the boundaries of California’s prin-
ciple groundwater basins. This figures highlights that there is broad coverage of monitoring wells in the agricultural
centers of California, such as the San Joaquin Valley.

14To account for outlier observations, we exclude observations that are more than 1.5 times greater than the inner
decile range reported from other monitoring wells in the same DAUCO over our sample. This rule removes observa-
tions with drastically different changes in groundwater levels than other local groundwater measures. Some of these
outlier observations are the result of a misplaced decimal, while other errors occur from monitor errors. We cannot
easily identify the source of error in these data, and for this reason remove these observations to reduce measurement
error.
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Figure 2: Agricultural Surface Water Allocation Percentages

Note: The figure graphs the fraction of agricultural water entitlements to be received by
irrigation districts at the DAUCO level for three years: 1994, 2006, and 2015. Allocation
percentages, which are announced by the state prior to the growing season based on
environmental conditions, vary over space and time.
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Figure 3: Annual Changes in Depth to the Water Table

NOTE: Figure displays the average changes in depth to the water table within a DAUCO
for 1994, 2006, and 2015. During drought year, 1994 and 2015, areas in the San Joaquin
Valley experience large reductions in groundwater depth. Whereas, in wet years, like
2006, those same areas experience small changes or even replenishment.

different years. It makes clear that groundwater tables generally decline in the drought years 1994

and 2015, and replenish during wet years. Declines are most pronounced in location-years that

experience the largest surface water curtailments, with some regions experiencing annual declines

of over 10 feet.
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Well Construction

We measure the extensive-margin response to surface water scarcity and extreme heat through the

metric of new agricultural well construction. We use the universe of Well Completion Reports

from DWR, which reports each well’s location, the drilled well depth, intended use, and drilling

date.15 Our final outcome is the count of the total number of new agricultural irrigation wells per

DAUCO-year.

Figure 4 maps new agricultural well construction for the years 1994, 2006, and 2015. New

well construction varies from year-to-year and increases in drought years. This activity is also

concentrated in the San Joaquin Valley. A visual comparison of Figures 2 and 4 suggests that

well construction is more pronounced in location-years that experience the largest surface water

curtailments.

Well Failures

Panel data on domestic well failures at the well-year are available from 2014 to 2021. Beginning in

2014, DWR created a system for households to report domestic well failures. These data, shown on

a map in Figure A4, contain the coordinates for the reported dry well, the date the issue started, and

if the issue was resolved. Using the Well Completion Report data, we create a panel on the service

status of all domestic wells by geographically matching the reported failures to the registered

domestic wells. We denote a well-year as failed if a well failure is self-reported; otherwise we

assume it is functional. This is an undercount of the true number of domestic well failures, since

household reporting is voluntary. Still, it is an improvement on past approaches that estimate

failures based on assumptions about the relationship between well depth and groundwater table

height.

15Since 1949, the California Water Code requires that well owners complete a Well Completion Report with the
California DWR within 60 days of the well construction. Prior to 2015, all Well Completion Reports were handwritten
and later digitized for the construction of this dataset.
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Figure 4: New Agricultural Well Construction

Note: The figure plots the count of new agricultural wells constructed at the DAUCO
level for three snapshots in time: 1994, 2006, and 2015. New agricultural well drilling is
predominant in the San Joaquin Valley.
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Since 2014, over 4,000 domestic well failures have been reported. The black outlined

region of Figure A4 illustrates that these well failures are concentrated in California’s San Joaquin

Valley. They also occur disproportionately in locations that experience large agricultural surface

water curtailments.

Weather

To measure extreme heat and precipitation we use weather observations from Schlenker and Roberts

(2009) and PRISM climate data. We model temperature as harmful degree days (degree days

over 32 degrees Celsius) and growing degree days (degree days over 8 and below 32 degrees Cel-

sius). Precipitation is measured as local annual precipitation in millimeters. Schlenker and Roberts

(2009) data, which are derived from PRISM weather station observations, end in 2019. We sup-

plement weather observations using PRISM data for 2020 and 2021.

5 Empirical Model

Our empirical framework uses annual fluctuations in local weather and surface supplies to empir-

ically quantify the effects of these shocks on access to drinking and agricultural groundwater. We

first test the prediction that heat and surface water scarcity will lead to declining water availability

as measured by changes in depth to the water table. We then evaluate the extent to which declin-

ing water tables impact drinking water access by testing the reduced form effects of surface water

scarcity and heat on the probability of well failure. Lastly, we empirically isolate new agricultural

well construction as one channel that explains declining water tables.

Changes in Depth to the Water Table

To evaluate the effect of heat and surface water scarcity on year-to-year changes in groundwater

levels, we use annual panel data to estimate a two-way fixed effects model,
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∆DTWidt = β1SWDdt +β2HDDdt +B′X idt +λt +αi + εidt . (6)

The dependent variable, ∆DTWidt , is the year-to-year change in the depth to the water table

for well i in DAUCO region d and year t. It measures the flow of groundwater levels at well i, as

opposed to the stock that is captured in the raw variable DTWit .We have two primary regressors of

interest: SWDdt and HDDdt . SWDdt measures surface water deliveries in acre-feet per crop acre

in DAUCO region d and year t. Similarly, HDDdt is the annual number of harmful degree days in

DAUCO d and year t. The vector X idt measures precipitation and growing degree days; λt captures

statewide annual shocks and trends; and αi absorbs fixed well level unobservables. Standard errors

are clustered by DAUCO to account for serial correlation among wells within the same district.

The coefficient β1 can be interpreted as the marginal effect of one AF/acre change in sur-

face water on the change in groundwater levels, holding constant heat and other weather. β2 is

interpreted as the marginal change in depth to the groundwater resulting from an additional harm-

ful degree day, holding constant surface water supplies. To obtain estimates that represent the

effects for the average acre of cropland in California and correct for potential over-sampling from

monitoring wells that may be geographically clustered, the regression is weighted by crop acres

times the inverse density of monitoring wells per DAUCO.

As previously mentioned, surface water deliveries may be influenced by users. In low sur-

face water allocation years, irrigation districts can affect their total delivery amount by purchasing

water on the spot market or drawing from water banks. These behaviors may be correlated with

groundwater extraction and bias estimates of equation 6. To account for this, we use surface wa-

ter allocations as an instrument for surface water deliveries and estimate an instrumental variables

model,
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∆DTWidt = β1 ˆSWDdt +β2HDDidt +B′X idt +λt +αi + εidt

SWDdt = γ1SDAdt + γ2HDDidt +Γ
′X idt +λt +αi +µidt .

(7)

The instrument SDAdt measures surface water allocations in DAUCO d and yer t; all other variables

are defined as before.

The use of allocations as an instrument in this setting hinges on the two standard instrumen-

tal variables assumptions. First, allocations must only affect the groundwater table through surface

water deliveries. In California, surface water allocations are set ahead of the growing season based

on that year’s environmental conditions and are not used for any other regulatory decisions. no ob-

vious channel exists through which this assumption would be violated. Second, allocations must

be a strong predictor of surface water deliveries. We present the F-statistic from the first stage in

table A1, which exceeds conventional thresholds.

Our primary identifying assumption is that conditional on well and year-fixed effects and

local weather, allocation percentages and extreme heat are orthogonal to unobserved factors as-

sociated with groundwater stocks. Threats to this assumption stem from regional time-varying

unobservables that correlate with both changes in water allocations and changes in the depth to

the groundwater table. Our inclusion of local precipitation and heat as control variables is moti-

vated by this concern. The insensitivity of the treatment effect to the inclusion and exclusion of

time-varying local weather shocks included in X it lends support to this identifying assumption.

Domestic Well Failures

Changes in the depth to the groundwater table may cause domestic wells to run dry. To estimate

the effect of heat and surface water scarcity on domestic well failures, we use well-level panel data

and again estimate an instrumental variables model with two-way fixed effects using OLS,
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Yidt = β1 ˆSWDdt +β2HDDdt +B′X idt +λt +αi + εidt

SWDdt = γ1SDAdt ++γ2HDDdt +Γ
′X idt +λt +αi +µidt

(8)

The outcome, Yidt , is now a binary outcome indicating whether domestic well i reported

failing in year t. All other variables are defined as in 7, with the exception of αi which denotes

domestic well fixed effects. The coefficient estimates of interest, β1 and β2, represent the change

in likelihood that a domestic well fails in a given year resulting from changes in surface water

availability and extreme heat, respectively. The regressions are weighted by the number of crop

acres in the DAUCO. Standard errors are clustered at the DAUCO level.

Agricultural Well Construction

Our final outcome of interest is new agricultural well construction. We focus on well construction

because it is the one observable mechanism that contributes to the reduction in groundwater tables.

New agricultural wells represent the observable extensive-margin response that complements the

unobservable intensive-margin response of increased pumping. To estimate the effects of drought

and surface water curtailment on agricultural well construction, we construct a balanced panel on

agricultural well construction, surface water, and weather at the Detailed Analysis Unit by County

(DAUCO) and annual level.

In this regression, our outcome of interest is the non-negative count of new agricultural

wells, and its distribution may be right skewed. For this reason, we deploy a control func-

tion approach with fixed effects estimated with Psuedo-Poisson Maximum Likelihood (PPML)

(Wooldridge, 2015), shown in equation 9. For robustness, we also report the result from the linear

two-stage least squares, similar to the previous outcomes.

E[Ydt |SWDdt ,HDDdt ,Xdt ,αd,λt ] = exp{β1 ˆSWDdt +β2HDDdt +B′Xdt +αd +λt +φ µ̂dt}

SWDdt = γ1SDAdt + γ2HDDdt +Γ
′Xdt +αd +λt +µdt .

(9)
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All variables are defined as before except now the variable Ydt measures the count of new

agricultural wells where d signifies the DAUCO and t denotes the year between 1993 and 2020.

The variable αd represents DAUCO fixed effects that account for the fact that DAUCO’s may have

different base-rates of well drilling and other time-invariant characteristics that are associated with

well construction. Time-fixed effects, γt , control for annual shocks like recession that may impact

statewide well drilling rates.

The coefficient β1 indicates that for every one AF/acre decrease in surface water deliveries,

the number of new agricultural wells will change by eβ1 −1 percent. Similarly, for every additional

harmful degree day, eβ1 −1 percent more agricultural wells will be constructed. This method also

allows us to test for endogeneity of surface water deliveries by including µ̂dt in the second stage.

The strength and significance of engodentiy is captured by φ . All regressions are weighted by crop

acres, which identifies the average treatment effect across California crop acres. Standard errors

are clustered at the DAUCO level.

6 Results

Results from the estimation of equation 7 are reported in Table 2. Columns (1) and (2) report results

from the reduced-form effect of per-acre allocations on the change in groundwater depth with and

without controls for local weather. Columns (3) and (4) present IV results where allocations are

used as an instrument for surface water deliveries. In our preferred specification in column (4), we

condition on local weather variables: Annual precipitation and growing degree days.

The reduced-form results, which represent an estimate of the intent to treat, show that

surface water allocations have a negative and significant impact on changes in the depth to the

water table. The table shows that allocations are relevant to agricultural groundwater pumping

and affect the underlying groundwater table through changes in surface water deliveries. However,

reduced-form results are attenuated because allocations are not perfectly correlated with surface
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water deliveries.

A first central result is that extreme heat and surface water scarcity lower the groundwater

table and lead to groundwater depletion. Our preferred estimates in column (4) of Table 2 imply

that a one AF/acre reduction in SW deliveries leads to a 2.9 ft decline in the groundwater levels,

extreme heat held constant. We also see that groundwater depth is responsive to extreme heat, with

groundwater levels declining by 0.03 ft for every additional harmful degree day. To contextualize

these results, 2021 was both a statistically dry and hot year, where California crop acres received

1.53 AF/acre of surface water (0.7 AF/acre below average) and 120 HDD (23 HDD above aver-

age).16 Therefore, surface water curtailments equal to 2021 levels results in a 2 ft decline across

California. The results also imply that 2021 levels of extreme heat, holding constant surface water

supplies, causes a 0.7 ft decline in groundwater levels.

This extraction of the groundwater stock, which manifests through changes in the depth

to the water table, generates externalities for other users of the resource.17 In this context, the

external costs imposed by groundwater pumpers who are reacting to changes in heat and surface

water scarcity are borne by neighboring users and future users of the groundwater. This externality

disproportionately puts household users of groundwater at risk since domestic wells are generally

drilled shallower on average and are more susceptible to well failure.

To explore this, we estimate a panel linear probability model of the probability of domestic

well failure on heat and surface water scarcity. Table 3 displays the results from the estimation

of equation 8. Column (1) presents the reduced-form effect of per-acre allocations and heat on

probability of a well failure with time and well fixed effects using data from 2015 to 2020. Column

(2) conditions on local weather. Columns (3) and (4) report the results from the instrumental

16For more of a historical context on the size of typical shocks, we can reference the sample "within" standard
deviation by calculating the standard deviation of surface water and heat for each DAUCO across time, and compute
the average across all DAUCOs. A one "within" standard deviation change is equal to 0.54 AF/acre for surface water
and 14 HDD for extreme heat.

17However, it should be noted that the depletion in groundwater stock also represents private pumping costs and
costs of future scarcity that are conceivably internalized by the producer.
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Table 2: Changes in Depth to the Groundwater (DTW)

Reduced Form IV

(1) (2) (3) (4)

Ag SW Allocation (AF/acre) -1.967** -1.533*
(0.674) (0.636)

Ag SW Deliveries (AF/acre) -3.684** -2.914*
(1.196) (1.174)

Harmful Degree Days 0.0308 0.0309**
(0.0160) (0.0115)

Observations 561,085 560,931 561,085 560,931
N Groups 83,782 83,762 83,782 83,762
Weights Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the change in the depth to the groundwater from the surface
(ft) from 1994-2020 at the monitoring well level. Columns (1) and (2) report results from
the reduced-form OLS model. Columns (3) and (4) report the second-stage IV results,
where Ag surface water allocations are used as an instrument. All regressions are weighted
by the DAUCO crop acres divided by the number of monitoring wells and include year and
DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported
in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

variable model. Our results demonstrate that extreme heat and surface water scarcity compromise

access to drinking water through the channel of well failures. Our preferred specification in column

(4) implies that an additional harmful degree day increases the probability that a well fails by

0.2%. That specification also displays that a one AF/acre reduction in surface water increases

the likelihood of local domestic well failure by 5%. These estimates imply that for 2021 levels of

weather shocks, well failure probability increases by 3.4% as a result of surface water curtailments,

and 4.8% due to extreme heat. These estimates are large marginal effects relative to the sample

mean probability of well failure displayed in Table 1.

Figure 5 shows that well failures resulting from weather shocks are concentrated in low-
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Table 3: Linear Probability of Reported Well Failure

Reduced Form IV

(1) (2) (3) (4)
Ag SW Allocation (AF/acre) -0.0156* -0.0280

(0.00705) (0.0156)

Ag SW Deliveries (AF/acre) -0.0296** -0.0557**
(0.00986) (0.0192)

Harmful Degree Days 0.00212* 0.00208*
(0.000950) (0.000908)

Observations 468,333 468,075 468,313 468,055
N Groups 78,084 78,041 78,064 78,021
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is a {0,1} outcome if a domestic groundwater reported a failure that year.
The panel spans from 2015-2020 and is composed of all domestic groundwater wells with unique
coordinates in California. All regressions are weighted by the DAUCO crop acres and include year
and DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in
parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

income populations and among people of color. To test for distributional impacts, we decompose

the overall treatment effect by subgroup by interacting an indicator for well failure and an indicator

for each subgroup. Panels (a) and (c) decompose the effect among percent of low-income quartiles.

Similarly, panels (b) and (d) separate the treatment effect into quartiles of percent non-white popu-

lation, respectively. Both sets of results show that the treatment effects on surface water deliveries

and HDD are driven by low-income and nonwhite populations, while higher-income and whiter

populations exhibit smaller shares of the overall treatment effect. Our results highlight that in Cal-

ifornia low-socioeconomic communities bear the burden of climate-driven changes in groundwater

levels from agricultural extraction.

Our final set of results explores one mechanism by which agricultural groundwater users
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Figure 5: Decomposing Average Treatment Effects (ATE) by Local Demographics

(a) Ag SW Deliveries (AF/acre) (b) Ag SW Deliveries (AF/acre)

(c) Harmful Degree Days (d) Harmful Degree Days

Note: Figure shows the share of the treatment effect on surface water and heat by demographic
quartile. Dependent variable is a binary outcome if a domestic groundwater reported a failure that
year multiplied by demographic quartile identifiers. For panels (a) and (c), the treatment effect on
well failures is decomposed by the census tract quartile for the percent of the population that is
low-income. Panels (b) and (d) the treatment effect is decomposed by by the quartile of percent of
the population that is non-white. All regressions are weighted by the DAUCO crop acres, include
year and DAUCO fixed effects, and control for local weather.
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can respond to heat and surface water scarcity: the construction of new wells. Table 4 reports the

estimates of new agricultural well construction on surface water deliveries, where surface water

deliveries are instrumented by allocations. Columns (1) and (2) report the result from a linear IV

specification. Columns (3) and (4) are estimated using a control function approach with a linear

first stage and PPML in the second stage. Controls for extreme heat and other weather are included

in columns (2) and (4). This table makes clear that heat and surface water scarcity induce farmers

to construct more agricultural wells. Our estimates imply that farmers drill approximately 46.2%

more agricultural wells for an AF/acre reduction in surface water and 1.3% more for every HDD

increase.18 Using surface water shocks and extreme heat experienced in 2021, our results imply

that farmers spent $24 million to construct 321 more wells because of surface water curtailments

and $22 million to construct 294 as the result of extreme heat at a uniform, assumed cost of $75,000

California State Board of Equalization (2023).

In addition to drilling more wells, it could be the case that farmers are responding by drilling

deeper wells. Table A8 in the Appendix considers the effect of surface water and temperature

shocks on the drilled depth of newly constructed wells, both agricultural and domestic. Results

suggest some evidence of this, although estimates are imprecise.

Temporal Dynamics

Until this point, our conceptual and empirical models have focused on the effects on groundwa-

ter outcomes in the contemporaneous year. Yet, these effects are unlikely to be fully isolated to

a single year. Our conceptual model posits that the number of groundwater wells directly im-

pacts consumption and groundwater stock. New well drilling may result in persistent depletion of

groundwater stocks in the future periods too as more total wells pump water than in prior years.

In this case, the full effect of one year’s weather shocks on groundwater levels is the accumulation

of the effect as additional pumping occurs in the current year plus future periods. We extend our

18Recall estimates must be transformed by eβ −1 in order to be interpreted as a percent change for Poisson models.
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Table 4: Construction of New Agricultural Wells: IV and Control Function

IV CF/PPML

(1) (2) (3) (4)
Ag SW Deliveries (AF/acre) -13.06** -12.38** -0.690** -0.620*

(4.584) (4.750) (0.262) (0.262)

Harmful Degree Days 0.111*** 0.0128***
(0.0329) (0.00261)

µ̂ 0.732* 0.767*
(0.346) (0.347)

Observations 9,660 9,240 8,568 8,400
N Groups 345 330 306 300
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. All re-
gressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard
errors are clustered at the DAUCO level and are reported in parentheses. Columns (3) and (4) standard
errors are calculated using 500 bootstrap simulations, clustered at the DAUCO level.
* p < 0.05, ** p < 0.01, *** p < 0.001

conceptual model to demonstrate this point in section A.2.

To explore the dynamic impact on groundwater levels empirically, we estimate a similar

model to equation 7 but also include lagged weather shocks measures to explore the persistence

and evolution of the effects over time. Figure 6 displays the main findings from this exercise.

The results demonstrate that flow of groundwater experiences large changes in the initial year of

the weather shock, consistent with Table 2, and groundwater levels also experiences persistent

and increasing declines over time. Six years after the initial shock, the cumulative change in

groundwater levels is 6.7 (ft) from an initial one AF/acre change in the first year. This effect is

more than double the contemporaneous effect of 2.9 (ft).19

19We are limited to track the full evolution of this effect throughout our sample due to a shrinking sample size and
increasingly noisy model with each subsequent lag. For this reason, we limit our results to focus on the six years after
the initial shock. However, the lifespan of modern agricultural wells may well exceed 100 years, implying even longer
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Figure 6: Cumulative Impulse Response of Surface Water Shocks on ∆DTW

Note: Figure displays the cumulative impulse response of a single surface water shock (AF/acre)
in the initial year. Dependent variable is ∆DTW and the dark line reflects the sum of contempo-
raneous and lagged coefficients on surface water deliveries for each year since the initial shock.
Light shading reflects confidence intervals clustered at the DAUCO level.

A separate concern with dynamics is that weather shocks simply induce a shift in the timing

of well construction as opposed to a marginal increase in total wells. A concern with this kind of

inter-temporal substitution is that this specification, which focuses only on the contemporaneous

effect, would be overestimating the treatment effect. Tables A5 and A6 in the Appendix consider

the dynamics of agricultural well drilling by including lagged surface water deliveries and harmful

degree days. We find that the impacts of weather shocks have a significant impact on contempora-

neous well construction, even when lagged surface water and heat are included in the regressions.

Furthermore, we do not find consistent evidence of inter-temporal substitution among any of the

alternative specifications. We discuss the findings of the dynamic well drilling in more detail in

lasting effects on groundwater stock from a single year’s well drilling.
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section A.2.

Extensive and Intensive Margin Adaptation

Based on the model set forth in equations 3 and A6, we use the point estimates on change in

groundwater depth in the contemporaneous year and the future, new well construction, and conser-

vative assumptions about the size of hydrologic coefficients for California to back out the intensive

margin response to heat and surface water scarcity. This exercise relates changes in groundwater

levels (i.e., changes in water-occupied space) within an aquifer (DTW ) to behavioral changes in

the volume of groundwater pumped for agricultural use. To do this, we need to introduce values

for four parameters (κ , w, q, and ∂R
∂ s ) from our conceptual framework as described in equation 3.

We assign these values based on our raw data, literature relevant to the Central Valley of Califor-

nia, and methodology from the California DWR as described in Table A3. Together, these values

allow us to decompose the change in groundwater depth into the intensive and extensive margin

response.

We report the calculations from this exercise on an AF/acre basis such that they are consis-

tent units as our primary measure of surface water in our empirical models. A one AF/acre reduc-

tion in surface water results in a 2.91 ft (dDTW
ds (s,h)) decline in groundwater levels in contempora-

neous year of the shock, or equivalently, 0.35 AF/acre additional gross groundwater depletion(dDTW
ds (s,h)×

1
κ

). Of this total effect, we attribute an upper bound value of 0.18 AF/acre to the potential reduc-

tion on recharge so as not to overstate the behavioral contribution.20 Given our estimates of new

agricultural wells drilled in Table 4, we calculate that approximately 0.01 AF/acre of the contem-

poraneous effect results from new wells, or 81,750 AF statewide. While 0.16 AF/acre of the gross

effect is due to the intensification of existing wells, or 1.6 million AF statewide.

Over time, the cumulative effect of this single-year shock persists and grows to 6.77 ft re-

20This value is calculated from California DWR Water Balance Data, which reports regional values of recharge as a
proportion of total applied water. The annual averages of these values range from 0.07-0.18 AF/acre. For this exercise,
therefore, we assume that all of the maximum potential recharge is lost from these weather shocks.
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duction in groundwater levels six years later. The persistence can be explained by the permanence

of agricultural wells once they are drilled, increasing groundwater extractions in the future even

under average future conditions as outlined in section A.2. Over the lifespan of the newly drilled

wells, total extraction from the these wells – or the cumulative extensive margin effect – likely far

exceeds the intensive margin adjustments to pumping behavior in the contemporaneous year.

Understanding the mechanisms through which agricultural producers respond to weather

shocks and the subsequent impacts can better inform policy aimed at conserving water resources.

We show that farmers substitute at least 16% of the lost surface water with groundwater supplies

when surface water curtailments are imposed in the contemporaneous year. This helps mitigate the

yield effects of the weather shocks, but strains historically unregulated groundwater resources. The

increase in the number of agricultural wells from these shocks also is a mechanism for persistent

increases in groundwater extractions over the lifespan of these new wells, continually straining

groundwater resources in the future and imposing external costs to other users of groundwater.

Adaptation through both the extensive and intensive margin to these shocks implies that groundwa-

ter regulation must target both mechanisms of behavior – reducing excess pumping at the well-level

and restricting the drilling of new wells – in order to be effective.

7 Discussion

Groundwater serves as a critical common-pool resource for the agricultural industry and supplies

drinking water to millions of residents in California. This paper illustrates that climate change

has accelerated groundwater depletion, exacerbated externalities, and will continued to do so if

poorly regulated. We show that this is driven by additional extraction by farmers as they rely more

heavily on groundwater to mitigate surface water scarcity and extreme heat. This behavior limits

the short-run agricultural costs of weather fluctuations but imposes external costs on domestic well

owners. Importantly, the costs are heavily born by people of color and low-income households.

33



The findings from this study are directly relevant to the management of groundwater, which

is largely unrelated across the world. In California, the Sustainable Groundwater Management Act

(SGMA), which was passed in 2014 but has yet to take hold, is a key legislation aimed at curbing

groundwater depletion. SGMA depends on local agencies and boards to monitor and implement

management plans, which has resulted in a patchwork of policy mechanisms and oversight. It

remains uncertain whether these localized plans will efficiently and sustainably manage the State’s

groundwater and eliminate the externalities documented in this paper (Bruno and Hagerty, 2023).

However, given that restrictions or moratoria on new well drilling are not regulatory instruments

in these management plans, the evidence of this paper would suggest that these externalities may

persist despite this legislation, especially in drought years.

Outside of the context groundwater, this paper demonstrates that adaptive behaviors to

shield against the damages of climate change may impose costs on others who are unable to

respond. While adaptation costs are conventionally included when costs of climate change ac-

counting, the externalities from adaptation are omitted from these figures. Additionally, as climate

adaptation occurs in other sectors (e.g. energy, healthcare, manufacturing), it is imperative for

policymakers to ensure that the actions taken to limit direct climate change damages are not unin-

tentionally imposing costs on others.
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Appendix

A.1 Supplementary Tables and Figures

Table A1: Agricultural SW Deliveries: First-Stage Results

(1) (2)

Ag SW Allocation (AF/ acre) 0.588*** 0.531***
(0.0460) (0.0540)

Harmful Degree Days -0.000353
(0.00172)

Growing Degree Days 0.000184***
(0.0000432)

Annual Precipitation -0.000461*
(0.000202)

Observations 9,660 9,240
N Cluster 345 330
F Stat 163.6 79.07
Weights Crop Acres Crop Acres
Cluster DAUCO DAUCO
Time FE ✓ ✓

Unit FE ✓ ✓

Note: The table presents the first-stage effect of surface water alloca-
tions on surface water supplies. The dependent variable is agricultural
surface water deliveries per crop acre in levels from 1993-2021. All
regressions are weighted by the DAUCO crop acres and include year
and DAUCO fixed effects. Standard errors are clustered at the DAUCO
level and are reported in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table A2: Construction of New Agricultural Wells: Reduced-Form

OLS PPML

(1) (2) (3) (4)

Ag SW Allocation (AF/ crop acre) -7.180** -6.581* -0.333* -0.278*
(2.665) (2.596) (0.131) (0.124)

Harmful Degree Days 0.115** 0.00897***
(0.0390) (0.00202)

Observations 9,660 9,240 8,568 8,400
N Cluster 345 330 306 300
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. Columns (1) and (2)
report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson maximum
likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects.
Standard errors are clustered at the DAUCO level and are reported in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table A3: Parameter Values for Decomposition

Parameter Value Units Description Source
dDTW

ds (s,h) -2.91 ft Gross change in DTW per
AF/acre change in surface
water

Table 3 Column 4

dDTWT
dst

(st) -6.77 ft Cumulative future change in
DTW per AF/acre change in
surface water

Figure 8

κ 8.33 unitless Inverse aquifer yield coeffi-
cient

Department of Water
Resources (2020)

∂R
∂ s 0.18 unitless Upper bound recharge coeffi-

cient. Change in groundwa-
ter recharge per AF/acre re-
duction in applied water.

Author’s calculation
from California DWR
Water Balance Data

∂w
∂ s -459 # of wells Change in the number of new

agricultural wells drilled due
to a one AF/acre change in
surface water

Table 6 Column 4 mul-
tiplied by the total an-
nual average of new
agricultural wells

q 178 AF/well Average AF of groundwater
pumped per well

Authors’ calculation
from Department
of Water Resources
(2020) and w

w 85,937 # of wells Number of wells drilled in
California

Well Completion Re-
ports (see Data)

acres 9,989,648 # of acres Total irrigated crop acres in
California

2015 USDA Cropland
Data Layer & Hagerty
(2021)

Note: The table reports estimated and calculated values for parameters in the decomposition of intensive
and extensive margin effects presented in equation 3.
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Figure A1: Population Demographics in California

% Hispanic Population
(a)

% Population below poverty line
(b)

Note: Figure displays demographics at the census tract level using data from 2020 (Manson et al.,
2022). Panel (a) plots the percentage of the population that identifies as Hispanic. Panel (b) plots
the percentage of households that fall below the federal poverty line for their household size. Bold
county boundaries specify counties in the San Joaquin Valley.
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Figure A2: Location of Domestic Wells

Note: The figure shows a location domestic groundwater wells constructed. Data are
from Well Completion Reports from DWR.
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Figure A3: Location of Monitoring Wells in California Groundwater Basins

NOTE: Figure displays the locations of groundwater monitoring wells and California’s
principle groundwater basins. Each dot displays a unique groundwater monitoring well
reported in our dataset. The blue shaded areas display the locations of Bulletin 118
groundwater basins in California.
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Figure A4: Locations of Reported Well Failures, 2014-2020

Note: This figure plots the locations of all reported well failures from 2014-2020 from the
Dry Wells Reporting System from California DWR. Counties in the San Joaquin Valley
have a thick border, and a large share of reported well failures occur in these counties.
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A.2 Temporal Dynamics

As discussed in the paper, the decision to drill a well and the subsequent impacts from that action
are inherently dynamic. In this section, we expand our base conceptual model to incorporate a
time element and test emprically the size and pattern of these effects over time.

Dynamic Conceptual Model

Consumption in year t is given by the number of active wells pumping at time t and the average
amount pumped from each well. For this expansion, we only focus on the effects for surface water
shocks, but symmetrical analysis could be shown for heat shocks:

Ct(st) = wt(st)×qt(st) (A1)

The number of wells in each period depends on the number of wells in the prior period.
Surface water affects only the number of new wells in year t:

wt(st) = wt−1 +∆wt(st)

= wt−2 +∆wt−1(st−1)+∆wt(st)

= w0 +
t

∑
τ=1

∆wτ(sτ)

(A2)

Future groundwater stock is a function of that year’s consumption and each preceding year’s
consumption:

DTWt(st) = DTW0 +κCt(st)−Rt(st)

DTWt+1(st ,st+1) = DTW0 +κ
(
Ct(st)+Ct+1(st+1)

)
−
(
Rt(st)+Rt+1(st+1

)
DTWT (st , ...,sT ) = DTW0 +κ

T

∑
τ=t

Cτ(sτ)−
T

∑
τ

Rτ(sτ)

(A3)

But consumption from one period to the next is linked by the fact that wells are persistent
once built.
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DTWT (st , ...,sT ) = DTW0 +κ

T

∑
τ=t

Cτ(sτ)−
T

∑
τ

Rτ(sτ)

= DTW0 +κ

T

∑
τ=t

qτ(sτ)wτ(sτ)−
T

∑
τ

Rτ(sτ)

= DTW0 +κ

T

∑
τ=t

qτ(sτ)
(

w0 +
τ

∑
u=t

∆wu(su)
)
−

T

∑
τ

Rτ(sτ)

(A4)

Expanding the sums for convenience, to keep current year shocks separate from later year
shocks:

DTWT (st , ...,sT ) = DTW0 +κ

T

∑
τ=t

qτ(sτ)
(

w0 +
τ

∑
u=t

∆wu(su)
)
−

T

∑
τ

Rτ(sτ)

= DTW0 +κqt(st)wt(st)+κ

T

∑
τ=t+1

qτ(sτ)
(

wt(st)+
τ

∑
u=t+1

∆wu(su)
)
−

T

∑
τ

Rτ(sτ)

(A5)

Then, assume a shock to surface water occurs in time t. The effect on future groundwater
levels can be decomposed as:

dDTWT

dst
· 1

κ
= wt(st)

dqt(st)

dst
+
(

qt(st)+
T

∑
τ=t+1

qτ(sτ)
)

∂wt(st)

∂ st
, (A6)

where wt(st)
dqt
dst

(st) represents the current year intensive margin shock, qt
∂wt
∂t
(st) is current

year extensive margin impact, and ∂wt
∂t

∑
T
τ=t+1 qτ(sτ) is the cumulative extensive margin impact.

Dynamic Empirical Estimation Results

Table A4 reports the dynamic effects up for up to 3 lag shocks on surface water deliveries and
harmful degree days. This table reflects the same model and pattern illustrated in figure 6. The
summed cumulative effect of surface water deliveries on changes in depth to the water table is
largest in the initial year, but persists and gradually increases with higher ordered lags.

Tables A5 and A6 consider the dynamics of agricultural well drilling. In Table A5, we
report the results a linear IV for well construction, similar to columns (1) and (2) of table 4 but
now supplemented with up to three lagged years of agricultural surface water deliveries. Columns
(2) through (4) each add an additional lag. In these specifications, deliveries are instrumented with
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surface water allocations. Table A6 similarly considers the dynamic effects on new agricultural
well construction but instead focuses on the reduced-form effect of surface water allocations with
the Poisson transformation. This is because the control function approach outlined in equation 9
is incompatible with lagged variables that enter nonlinearly. A look at the coefficients on lagged
surface water supplies across all specifications reveals no consistent pattern. The sum of the coef-
ficients, which captures the effect of a single supply shock over time, are not statistically different
from each other across specifications. This suggests that the contemporaneous effect is character-
izing the most meaningful impact of year-to-year changes in water supplies on new agricultural
well construction.

These results can be explained by the presence of two opposing forces. On the one hand,
heat and surface water shocks may alter farmers’ expectations about future climate conditions and
water availability, causing them to drill more wells today and over the lifetime of their operations.
Realizations of drought increase the incentive to drill by increasing the cost of delaying.

On the other hand, it may be the case that farmers are simply shifting forward in time the
decision to drill a new well. A behavioral response that only consists of inter-temporal substitution
would suggest that coefficients on lagged variables should take the opposite sign of the contem-
poraneous effect, because drilling a well today reduces the need to drill in the future. This in turn
would cause the sum of the coefficients to attenuate as we add more lagged variables. Since we
see no observable trend from the inclusion of the lagged variables, it suggests that neither of these
forces are dominating. These two effects are working in opposite directions and cannot be teased
out. Taken together, this pattern of results on lagged variables support our main results reported
in Table A2. The vast majority of the effects of drought on well construction are concentrated in
the first year. We proceed by focusing on the more parsimonious specification of equation 9 and
retaining power with more observations.

The effects of surface water reductions and heat could conceivably impact groundwater
outcomes in future years as well. If more agricultural wells are drilled in the contemporaneous
year, this extensive margin change may also result in additional groundwater extraction – and thus,
a lower groundwater table – in future years as well. If dynamics are present, it may imply that the
contemporaneous effect alone is a lower bound of the cumulative effect of surface water and heat
shocks. Table A4 reports estimates of changes in groundwater depth (∆DTW ) regressed on lagged
weather shocks.

Similarly, we explore the impacts of prior weather shocks on reported well failures in Table
A7. Columns (2) and (3) indicate that the effects of a one AF/acre surface water reduction may re-
sult in as much as a 32% increase in the probability of well. However, this is the opposite direction
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of the lagged effects of harmful degree days. We are hesitant to draw definitive conclusions from
this table, however, since the panel only consists of five total years of well failure data.

A.3 Additional Empirical Specifications

In addition to drilling more wells, it could be the case that farmers are responding by drilling
deeper wells. Table A8 considers the effect of drought on the drilled depth of newly constructed
wells, both agricultural and domestic. Columns (1) to (3) present results of the effect of surface
water allocations and harmful degree days on well depth, conditional on time and unit fixed effects
and weather variables. Columns (2) and (3) isolate agricultural and domestic wells, respectively.
Columns (4) through (5) present the IV results where allocations are used as an instrument for
deliveries. While noisy, the sign of the effects suggest that as surface water supplies decrease and
heat increases, wells are drilled to a greater depth.

Lastly, we conduct two falsification tests of our primary model. First, Table A9 reports
the results of regression new domestic well construction on agricultural surface water deliveries
and harmful degree days. Since agricultural surface water allocations are solely related to the
agricultural sector, we expect shocks to this variable to be unrelated to domestic well construction.
Indeed, none of the coefficients report a significant effect on the new domestic well construction.
Furthermore, additional HDDs do induce more domestic wells to be drilled, but the response is
smaller in magnitude than for agricultural well construction. This supports that agricultural well
drilling is due to reduced surface water for agriculture, and not some correlated factor with all
types of well drilling more broadly. Further, this also shows that domestic households are unable
to respond to heat to the same degree as agricultural groundwater users, and thus, more vulnerable
to groundwater scarcity in the future.

We explore whether shocks in surface water supplies to other sectors, municipal and indus-
trial, impact agricultural well drilling in table A10. These results indicate that municipal and in-
dustrial water supplies are actually positively correlated with agricultural well construction, which
is opposite of the effect of agricultural surface water. None of these coefficients are significant,
and again, supports that the results in Tables A2 and 4 are due to agricultural surface water and not
another factor that is correlated with all sectors’ water supplies.
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Table A4: Lagged Changes in Groundwater Depth

(1) (2) (3) (4)
∆DTW

Ag SW Deliveries (AF/Acre) -2.914* -2.716* -3.121** -3.188*
(1.174) (1.080) (1.102) (1.242)

L.Ag SW Deliveries (AF/Acre) 0.220 -0.258 -0.135
(0.634) (0.672) (0.803)

L2.Ag SW Deliveries (AF/Acre) -0.701 -1.216
(0.765) (0.792)

L3.Ag SW Deliveries (AF/Acre) -0.520
(0.381)

∑βdeliveries -2.914 -2.496 -4.080 -5.058
pdeliveries 0.0130 0.00414 0.0000763 0.0000808
Harmful Degree Days 0.0309** 0.0187 0.0181 0.0145

(0.0115) (0.0140) (0.0127) (0.0123)

L.Harmful Degree Days 0.0223* 0.0252* 0.0299*
(0.0105) (0.0104) (0.0126)

L2.Harmful Degree Days -0.0114 -0.0159
(0.00741) (0.00994)

L3.Harmful Degree Days 0.00535
(0.0101)

∑βhdd 0.0309 0.0410 0.0319 0.0338
phdd 0.00740 0.00693 0.0393 0.0298
Observations 560,931 421,251 321,384 246,159
N Cluster 282 277 269 260
Weights Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓

Note: Dependant variable is the change in the depth to the groundwater from the surface (ft)
from 1994-2020 at the monitoring well level. All regressions are weighted by the DAUCO
crop acres and include year and DAUCO fixed effects. Standard errors are clustered at the
DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table A5: Lagged Agricultural Well Construction

(1) (2) (3) (4)
New Ag Wells per DAUCO

Ag SW Deliveries (AF/ crop acre) -12.38** -11.51** -11.53* -11.45*
(4.750) (4.450) (4.582) (4.537)

L.Ag SW Deliveries (AF/ crop acre) -3.512 -2.999 -3.602
(2.858) (2.779) (3.207)

L2.Ag SW Deliveries (AF/ crop acre) 1.377 3.089
(2.355) (2.505)

L3.Ag SW Deliveries (AF/ crop acre) -4.109
(2.853)

∑βdelieveries -12.38 -15.02 -13.15 -16.07
pdeliveries 0.00913 0.00877 0.0277 0.0355
Harmful Degree Days 0.111*** 0.0981** 0.0971** 0.0897**

(0.0329) (0.0349) (0.0318) (0.0327)

L.Harmful Degree Days 0.0809* 0.0848* 0.0548
(0.0397) (0.0426) (0.0390)

L2.Harmful Degree Days 0.0551* 0.0643**
(0.0247) (0.0239)

L3.Harmful Degree Days 0.0174
(0.0237)

∑βhdd 0.111 0.179 0.237 0.226
phdd 0.000760 0.00484 0.00171 0.00302
Observations 9,240 8,910 8,580 8,250
N Cluster 330 330 330 330
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Other Weather ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓

Note: Table reports regression results from a lagged linear IV model. The dependent variable is the count of new
agricultural wells per DAUCO from 1993-2020. All regressions are weighted by the DAUCO crop acres and include
year and DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table A6: Lagged Agricultural Well Construction

(1) (2) (3) (4)
New Ag Wells per DAUCO

Ag SW Allocation (AF/crop acre) -0.278* -0.284* -0.306* -0.281*
(0.124) (0.130) (0.126) (0.137)

L.Ag SW Allocation (AF/crop acre) 0.0184 -0.0150 -0.0370
(0.0500) (0.0436) (0.0495)

L2.Ag SW Allocation (AF/crop acre) 0.157 0.184*
(0.0835) (0.0814)

L3.Ag SW Allocation (AF/crop acre) -0.0202
(0.0715)

∑βdeliveries -0.278 -0.266 -0.164 -0.154
pdeliveries 0.0249 0.0481 0.235 0.338
Harmful Degree Days 0.00897*** 0.00958*** 0.00915** 0.00972**

(0.00202) (0.00261) (0.00287) (0.00323)

L.Harmful Degree Days 0.00331 0.00435 0.00190
(0.00266) (0.00250) (0.00251)

L2.Harmful Degree Days 0.00447 0.00383
(0.00254) (0.00266)

L3.Harmful Degree Days 0.00521*
(0.00240)

∑βhdd 0.00897 0.0129 0.0180 0.0207
phdd 0.00000911 0.000326 0.000125 0.000110
Observations 8,400 8,073 7,722 7,400
N Cluster 300 299 297 296
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. All regressions are
weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are clustered at the
DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table A7: Lagged Probability of Well Failure

(1) (2) (3) (4)
Well Failure Reported

Ag SW Deliveries (AF/ crop acre) -0.0548** -0.0397** -0.178** 0.000778
(0.0191) (0.0131) (0.0597) (0.0277)

L.Ag SW Deliveries (AF/ crop acre) -0.0677* -0.177* -0.0296
(0.0265) (0.0691) (0.0278)

L2.Ag SW Deliveries (AF/ crop acre) 0.0257 -0.0216
(0.0168) (0.0122)

L3.Ag SW Deliveries (AF/ crop acre) 0.00908
(0.00649)

∑βdeliveries -0.0548 -0.107 -0.329 -0.0414
pdeliveries 0.00415 0.000413 0.00529 0.453
Harmful Degree Days 0.00205* 0.00157* 0.00142* 0.0000432

(0.000899) (0.000759) (0.000634) (0.0000781)

L.Harmful Degree Days -0.00333* -0.00187 0.000179
(0.00166) (0.00116) (0.000168)

L2.Harmful Degree Days -0.000906 -0.000166
(0.000612) (0.000161)

L3.Harmful Degree Days 0.0000875
(0.000150)

∑βhdd 0.00205 -0.00176 -0.00135 0.000144
phdd 0.0228 0.106 0.364 0.745
Observations 476,748 476,748 397,290 317,832
N Cluster 342 342 342 342
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. Columns (1) and (2)
report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson maximum
likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects.
Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table A8: New Constructed Well Depth

Reduced Form IV

(1) (2) (3) (4) (5) (6)
Both Ag Domestic Both Ag Domestic

Ag SW Allocation (AF/ crop acre) -22.90 -23.14 -8.170
(18.16) (21.67) (7.699)

Ag SW Deliveries (AF/ crop acre) -37.03 -34.48 -14.14
(29.10) (32.23) (14.34)

Harmful Degree Days 1.431* 2.592* 0.346 1.340* 2.449* 0.319
(0.624) (1.108) (0.244) (0.563) (1.019) (0.237)

Observations 144,917 31,042 114,034 144,890 30,955 113,863
N Groups 337 310 334 328 295 322
Weights Crop Acres Crop Acres Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓ ✓ ✓
DAUCO x Type FE ✓ ✓ ✓ ✓ ✓ ✓
Other Weather ✓ ✓ ✓ ✓ ✓ ✓

Note: Dependent variable is the depth (ft) of newly constructed wells from 1993-2020 at the well level. Columns (1) and (4) reports results for both
agricultural and domestic wells, (2) and (3) for just agricultural wells, and (3) and (6) for just domestic wells. All regressions are weighted by the
DAUCO crop acres and include year and DAUCO by well type fixed effects. Standard errors are clustered at the DAUCO level and are reported in
parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

Table A9: Construction of New Domestic Wells

OLS PPML

(1) (2) (3) (4)
Ag SW Allocation (AF/ crop acre) -1.534 -1.021 -0.0657 -0.0128

(1.582) (1.535) (0.0783) (0.0641)

Harmful Degree Days 0.0774 0.00950*
(0.0477) (0.00445)

Observations 9,660 9,240 9,072 8,876
N Cluster 345 330 324 317
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new domestic wells per DAUCO from 1993-2020. Columns (1) and
(2) report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson
maximum likelihood model. All regressions are weighted by the DAUCO crop acres and include year and
DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table A10: Construction of New Agricultural Wells: Municipal and Industrial Surface Water

OLS PPML

(1) (2) (3) (4)
M&I SW Allocation per Acre 19.71 23.36 1.407 1.459

(28.88) (28.91) (1.300) (1.257)

Harmful Degree Days 0.115** 0.0143***
(0.0422) (0.00287)

Growing Degree Days 0.000191 0.000472
(0.00839) (0.000636)

Observations 8,874 8,400 7,540 7,224
N Cluster 306 300 260 258
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. In-
dependent variable is surface water allocated (AF per crop acre) for municipal and industrial use, as
opposed to agricultural use. Columns (1) and (2) report the coefficients for the OLS model. Columns
(3) and (4) report coefficients from a psuedo-poisson maximum likelihood model. All regressions are
weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are
clustered at the DAUCO level and are reported in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
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