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Abstract: 

In deregulated electricity markets, economic support schemes for renewable 
energy (RES-E) technologies are typically implemented under the pretense of 
shielding investors from revenue risk arising from stochastic wholesale electricity 
prices. Two dominant RES-E support policies worldwide are feed-in tariffs (FIT) 
and renewable portfolio standards (RPS). Thus far, the economic and policy 
literature has failed to acknowledge a key benefit to retail electricity providers 
(and, ultimately, to consumers)—that stimulating investment in RES-E generation 
itself reduces wholesale price risk. Using a simple theoretical model of an 
electricity market, we demonstrate that greater RES-E generation should reduce 
the short-run variance in the wholesale electricity price, and thus in total 
electricity expenditures per unit (which include payments to RES-E related to the 
prevailing support policy). We find empirical support for this hypothesis using a 
panel of policy, price, and generation data for 19 countries over the period 2000-
2011. Both FIT and RPS are found to reduce the short-run variance in total 
electricity expenditures per unit, due largely to a reduction in the variance in 
wholesale prices. Moreover, we find evidence that FIT reduces the variance in 
electricity expenditures per unit over the long-run, whereas RPS does not.  
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1. Introduction 

The transition from a global energy economy based on fossil fuels to one based on 

carbon-free renewable resources is among the most pressing and challenging issues of 

our time. In the electricity sector, most renewable technologies are not yet competitive 

with conventional fossil fuels due to higher generation costs per kilowatt-hour (kWh). 

This disadvantage inhibits incentives for investment in renewable generation capacity. 

Many governments around the world have implemented economic support policies to 

stimulate investment in renewable generation, with the ultimate goal of reducing carbon 

emissions in response to increased public concern over the potential risks of 

anthropogenic climate change. Two dominant renewable support policies have emerged. 

Feed-in tariffs (FIT) guarantee that all eligible renewable-energy-source electricity (RES-

E) producers receive a fixed price (or fixed premium) per kWh generated, and obligate 

the nearest utility provider to purchase and distribute all available RES-E (Cory et al. 

2009; Mendonça et al. 2010). By contrast, under a renewable portfolio standard (RPS), 

retail electricity providers are required to procure a specific proportion of supply from 

renewable sources.  

A robust literature spanning disciplines such as economics, policy, and electrical 

systems engineering has sought to compare and contrast RPS and FIT on multiple 

dimensions (see Section 2 for a thorough review). We contribute to this literature by 

exploring a previously overlooked aspect of the RPS-FIT comparison. Specifically, our 

goal is to empirically examine the short- and long-run variance – that is, risk – faced by 

retail utility providers with respect to per-unit electricity expenditures that emerges under 

RPS and FIT schemes. It is well known that deregulated electricity markets are prone to 

significant variability in wholesale prices, resulting from a number of factors including 

(but not limited to) variation in fuel prices, availability of generation capacity, 

unexpected outages, demand elasticity and exogenous demand variations, the lack of 

large-scale storage capability, and transmission constraints (Benini et al. 2002). 

Stochastic price fluctuations, compounded by the ‘intermittency’ problem associated with 

key renewable technologies like wind and solar, imply risk and uncertainty are 

unavoidable aspects of the renewable generation problem.  
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Proponents of FIT argue that it insulates investors from revenue risks associated 

with electricity price variability. But investors are not the only market participants to 

whom a reduction in this specific source of risk might be considered beneficial. Retail 

electricity providers mitigate wholesale price risk through hedging, futures markets, and 

other potentially costly risk management strategies, but are unable to perfectly shield 

themselves from price risk. Thus, the costs of such risk faced by electrical utilities must 

ultimately be borne in the form of higher risk premiums passed on to electricity 

consumers.  

Intuitively, in the short run any policy that stimulates RES-E generation should 

reduce the variability electricity expenditures per unit paid by utilities. As we explain 

below using a simple appeal to theory, this is because an increase in RES-E generation 

shifts the conventional electricity supply curve outward, implying the stochastically 

fluctuating demand curve intersects it at a flatter section, thus suppressing the resulting 

price variability (Johnson and Oliver 2016). We find empirical support for this theory by 

regressing the quarterly variance of total electricity expenditures per unit on FIT and RPS 

indicators, controlling for a number of other relevant covariates. We find that both FIT 

and RPS reduce the variance in total electricity expenditures per unit. As a secondary 

hypothesis, we test whether FIT reduces total electricity expenditures by more than RPS 

due to the fixed price design. We find this to be the case qualitatively, despite being 

unable to reject the null hypothesis of no statistically significant difference between the 

estimated coefficients. The intuitive conclusion is that the reduction in variance is driven 

primarily by the supply-curve effect. The implication is that from the standpoint of retail 

electricity providers, either policy is effective at reducing short-run wholesale price risk. 

Perhaps the most closely related paper to our short-run analysis comes from the 

operations research literature. Wozabal et al. (2014) develop a similar theoretical model 

to examine the effect of intermittent energy sources on electricity price variance. Much 

like our use of quarterly variance in electricity expenditures per unit (essentially a 

weighted average price) as the dependent variable in our regressions, Wozabal et al. use 

intraday price variance (in the German power market only). The distinction is thus short 

run versus very short run. Wozabal et al. find that increased production of intermittent 

generation generally reduces wholesale price variance in the very short run, although the 
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opposite occurs for “very low and very high” levels of intermittent generation relative to 

total demand. Ultimately the effects depend on the distribution of intermittent generation 

and the slope of the supply function, which complements own model predictions and 

empirical findings.  

We also examine how the presence of RES-E support policies affects the long-run 

variance in electricity expenditures per unit. Our long-run model and empirical 

specification are motivated by Schmalensee’s (2012) theoretical model of long-run 

electricity expenditure variance under FIT and RPS.  Using cross-country variation in 

trends in electricity expenditure variance, we find evidence that FIT reduces long-run 

variance in electricity expenditures —and therefore long-run expenditure risk. For RPS 

we are unable to reject the null hypothesis of no effect on long-run electricity expenditure 

risk. As we explain, these results run counter to Schmalensee’s prediction. 

The remainder of the paper proceeds as follows. Section 2 provides a detailed 

overview of RPS and FIT with a review of the existing literature on the advantages and 

disadvantages of each policy. In section 3, we describe the simple theoretical intuition for 

why the variance in short-run electricity expenditures per unit should be expected to fall 

as a result of RES-E support policies. Section 4 describes our data, empirical design, and 

estimation results, and provides further discussion of the implications for policy and 

industry. Section 5 reviews Schmalensee’s (2012) theoretical model and provides a 

limited test of the effects of RES-E support schemes on long-run electricity expenditure 

risk. Section 6 concludes. We also provide an appendix with more detailed information 

on our data. 

 

2. Policy Overview: FIT versus RPS 

2.1. Feed-in Tariffs 

FIT supports investment in RES-E in two ways.1 First, it guarantees that all eligible 

producers receive per kilowatt-hour (KWh) a fixed price or the spot price plus a fixed 

premium (Cory et al. 2009).  Second, the nearest utility provider is obligated to purchase 

and distribute all RES-E that ‘feeds-in’ to the grid, regardless of electricity demand 

                                                        
1 For a complete overview, see Mendonça et al. (2010). A more concise, but sufficiently informative review 
of alternative FIT design options is available in Couture and Gagnon (2010). 



5 
 

(Mendonça et al. 2010). Successful FIT design typically determines tariff levels based on 

a generator’s levelized cost-of-service (Couture and Cory 2009). Total generation costs 

per kWh vary across technologies and sites, and include the costs of capital investment, 

regulatory compliance and licensing, operation and maintenance, fuel costs (for biomass 

and biogas generation), inflation and interest, and a rate of return on investment (Klein et 

al. 2010). Generally, cost amortization requires that a shorter period of guaranteed 

payment be associated with a higher tariff. Worldwide, the most commonly used 

remuneration period is 15-20 years, where 20 years is considered to be the average life of 

a typical renewable energy plant (Mendonça et al. 2010). Finally, most FITs provide for 

(i) ‘tariff digression’; and (ii) tariff review and revision. Tariff digression is defined as a 

level of remuneration that depends on a plant’s vintage—newer plants receive lower 

guaranteed payments, increasing the incentive to install new capacity sooner rather than 

later and stimulating technological improvement. The possibility of review and revision 

reflects an acknowledgment of underlying technological and market developments that 

may unexpectedly affect capacity costs due to input price shocks (Klein et al. 2010).   

 

2.2.  Renewable Portfolio Standards 

RPS is a quantity-based instrument in which the regulator requires that a specific 

proportion of electricity come from renewable sources (typically per year). Electric 

utilities can meet RPS requirements by purchasing RES-E from independent generators, 

or through the installation and operation of their own facilities (Wiser et al. 2005). 

Successful implementation of RPS policy typically includes a complementary market for 

tradable renewable energy certificates (RECs). 2  For every megawatt-hour (MWh) of 

RES-E generated, a REC is created. The utility pays the renewable generator for both the 

electricity supplied and the REC, providing renewable generators with a supplemental 

income stream. Each year, RECs are surrendered to the jurisdictional regulator to 

demonstrate compliance with the RPS. Alternatively, RECs can usually be ‘banked’ for 

future use (Johnson 2014). Utilities with RECs in excess of the RPS requirement can sell 

                                                        
2 Also commonly referred to as ‘tradable green certificates’. 
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them in the market for RECs, while others might purchase RECs as a substitute for 

purchasing electricity directly from renewable generators (Wiser and Barbose 2008).3   

 

2.3. Advantages and Limitations of FIT and RPS 

A number of studies have explored the advantages and disadvantages of FIT and RPS 

schemes based on various objective criteria.4. While an exhaustive review is not possible 

here, we review what we believe to be the main findings of the existing literature. 

There are many risks involved in the development of RES-E generation capacity. 

Dinica (2006) provides a complete discussion of FIT and RPS from the viewpoint of 

investors with regard to the various sources of risk. FIT design itself imposes policy risks 

on investors including uncertainty over the duration of the administrative process or 

unexpected changes in the remuneration level.5 At the core of the investment decision, 

however, are electricity price risk and the reliability of purchase contracts. A fixed price 

FIT with a purchase obligation insulates investors from risks associated with electricity 

price variability and contract uncertainty, while eliminating windfall profits associated 

with exceptionally high spot prices.6 Guaranteed payments provide renewable generators 

with unmatched security regarding future revenues, and investors are remunerated based 

on the actual costs of renewable energy project development. This characteristic is 

especially attractive for the financing of capital-intensive technologies with high entry 

costs and a high ratio of fixed to variable costs (Couture and Gagnon 2010).   

FIT policy has its drawbacks. In isolation, state or national remuneration levels 

may produce the desired effect of supporting the local diffusion of RES-E. With fully 

open borders, however, FIT may be undermined as supported renewable sources compete 
                                                        
3 See Amundsen and Mortensen (2001) for formal analytical treatment of the quota system (RPS) with 
tradable green certificates (RECs). 
4  Many have compared and contrasted FIT and RPS with other RES-E support schemes, including 
investment tax credits, production subsidies, clean energy standards, net metering, carbon emissions taxes, 
carbon cap-and-trade, bidding auctions for long-term purchase contracts, and others (e.g., Madlener and 
Stagl, 2005; Palmer and Burtraw, 2005; Huber et al. 2007; Finon and Perez 2007; Mulder 2008; Timilsina 
et al. 2012; Fell and Linn 2013; Johnson 2014). Some researchers have also begun to study the implications 
of overlapping RES-E support policies (e.g. Cory et al. 2009; Fischer and Preonas 2010; Böhringer and 
Rosendahl 2010). 
5 Lüthi and Wüstenhagen (2012), for example, find experimental evidence that solar PV developers, in 
deciding between investment opportunities in different countries, weigh FIT-based returns against various 
policy risks, ultimately choosing the country with the most favorable risk-return profile. 
6 With a fixed premium FIT, investors are exposed to price risk but guaranteed a minimum payment per 
kWh, with the opportunity to collect windfall profits when spot prices spike (Gross et al. 2010).  
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with each other. For example, in the absence of a single, harmonized FIT for the entire 

European market, Ringel (2006) points out that FIT may create a competitive advantage 

for (1) technologies with high support levels; (2) countries with large natural endowments 

of renewable generation potential; or (3) countries with unambitious targets for the 

penetration of renewables. As a result, either a race-to-the-bottom on environmental 

stringency or a race-to-the-top on remuneration levels may ensue. A more common 

critique of FIT is that it may fail to provide incentive for cost-reducing technological 

improvements (Mitchell 2000; Menteneau et al. 2003; Söderholm and Klaasen 2007; 

Butler and Neuhoff 2008; Tamás et al. 2010).  Because renewable developers do not face 

price competition, FIT sacrifices least-cost efficiency in exchange for greater and more 

rapid diffusion. Popp et al. (2011), however, find no statistically significant effect of FIT 

or RPS on technological advancements in the renewable energy sector. 

RPS exhibits an entirely different set of advantages and limitations.  Because RPS 

ensures that renewables attain a specific market share, the regulator is able to directly 

calculate the program’s contribution toward the environmental goal of CO2 reduction 

(Berry and Jaccard 2001).  Moreover, by requiring retail electricity providers to procure a 

mandated minimum proportion of their supply via renewable sources at market prices, 

RPS obligations encourage renewable generators to meet the target in a least-cost fashion 

(Wiser and Barbose 2008). In theory, this cost competition among renewable developers 

incentivizes economic efficiency through technological improvement, and the cost 

reductions can then be passed on to consumers.  

Some researchers have concluded that RPS exhibits static efficiency, yet suffers in 

terms of dynamic efficiency (e.g. Finon and Menteneau, 2004; Finon, 2006; Finon and 

Perez, 2007). That is, RPS efficiently allocates the quota obligation across renewable 

producers in the short-run, which occurs where marginal production costs are equalized 

across producers. However, precisely because RPS favors the least-cost renewable 

generators in the short run, this creates a disincentive for the development of less mature, 

higher cost technologies over the long run. Thus, RPS fails to provide fertile ground for 

the development of a wide range of renewable technologies.7  Johnstone et al. (2010) find 

empirical  evidence  that RPS is more likely to induce innovation in renewable generation  

                                                        
7 See Buckman (2011) for variants on the RPS framework designed to correct for this weakness. 
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(a) Without RES-E support    (b)  With RES-E support 

Figure 1. Simple model of an electricity market. Source: Johnson and Oliver (2016) 

 

 

technologies (like wind power) that are “close to competitive with” conventional fossil 

power, but not for higher-cost technologies (like solar PV). Finally, because consumers 

ultimately bear the cost of a renewable policy’s influence over the energy supply mix, 

retail electricity price effects are an important indicator of the welfare burden. Fischer 

(2010) shows that when the supply curves of non-renewable generation are not perfectly 

flat, consumer electricity prices fall under RPS only when the quota is low. When the 

quota is high, however, electricity prices rise steeply. Palmer and Burtraw (2005) find a 

similar result. 

 

3. A Simple Model of Short-run Electricity Expenditure Risk 

To provide our own intermediate-level microeconomic intuition for why RES-E support 

policies might be expected to reduce short-run electricity expenditure risk, we recap the 

theory proposed in Johnson and Oliver (2016). Consider the simple diagrammatic model 

presented in Figure 1. Let 𝐷(𝑃) be the inverse electricity demand curve, where 𝑃 is the 

wholesale price of electricity. Assume 𝐷(𝑃) has some stochastic component (related to 

weather, for example) that causes it to shift up and down in the short-run. For simplicity, 

define 𝐷�(𝑃) as the upper limit for a positive short-run demand shock and 𝐷(𝑃) as the 

lower limit for a negative demand shock. Let 𝑄 denote the quantity demanded/supplied. 
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Assume the short-run supply curve for conventional electricity, 𝑆(𝑃), is relatively flat for 

low supply quantities, but rises sharply as 𝑄 approaches maximum generation capacity, 

𝑄� . This is consistent with the conventional wisdom concerning short-run electricity 

supply curves. 

Panel (a) depicts the baseline scenario with no RES-E support policy, which we 

assume results in zero RES-E generation. Given the upper and lower bounds of the 

stochastic demand curve, the equilibrium wholesale price fluctuates between 𝑃�∗ and 𝑃∗. 

In panel (b), the RES-E support policy induces RES-E generation amount 𝑄𝑅, shifting the 

entire supply curve to the right, from 𝑆(𝑃) to 𝑆̅(𝑃),  and effectively increasing maximum 

generating capacity from 𝑄�  to 𝑄� = 𝑄𝑅 + 𝑄� . With RES-E generation, the equilibrium 

wholesale  price of electricity falls from 𝑃∗ to 𝑃∗∗,  consistent with the analysis  of  Sáenz 

de Meira et al. (2008). Additionally, it is easy to see that the range of variation in the 

wholesale price is lower, fluctuating between 𝑃�∗∗ and 𝑃∗∗. Thus, we should expect that 

any policy leading to a short-run increase in RES-E generation should result in lower 

variability in the wholesale price – and therefore in total electricity market expenditures 

per  unit  –  driven  by  movement  downward  along  the  conventional  electricity supply 

curve. 8  Note that the same argument holds even if 𝑄𝑅  is stochastic because of 

intermittency. Hereafter, we refer to this as the ‘supply curve effect.’9 

 In addition to this electricity supply effect, we expect that FIT should reduce the 

variation in electricity expenditures per unit by more than RPS, simply because of the 

fixed-price design. We will refer to this as the ‘fixed-price effect’ of FIT. Intuitively, we 

expect the fixed-price effect to be small, simply because even countries with relatively 

extensive RES-E generation capacity, the proportion of FIT-eligible producers in the 

overall energy mix will be small. We now turn to an empirical test of these hypotheses 

using international data on wholesale electricity prices and generation. 

 

 

                                                        
8 Note also that our simple model predicts a general reduction in wholesale electricity prices, consistent 
with the finding of Sáenz de Meira et al. (2008). 
9 It is not necessarily true that total electricity expenditures will decrease since under either support policy, 
there are additional payments to renewable generators that may, in theory, increase total expenditures if the 
premiums are sufficiently high. 
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Figure 2. Sample FIT, RPS, and REC data. 

 

 

4. Empirical Analysis 

4.1. Description of the Data 

The final sample used in our estimation consists of an unbalanced panel of 19 countries 

over the period 2000-2011. Our data were compiled from multiple sources, rendering the 

data-cleaning process a formidable one. The reward is that our dataset is entirely unique 

to this paper.  

FIT and RPS data are taken from Johnstone et al. (2010), and contain FIT 

payments (by resource) and RPS requirements for each country at an annual interval. US 

REC prices10 were purchased from Marex Spectron; all others are publicly available on 

the web. Figure 2 displays average FIT payments by resource by year across countries, 

RPS requirements by country by year, and REC prices by country by year. 

                                                        
10 These prices are calculated as a weighted average of individual state REC prices, weighted by the RPS 
requirement in each state.  States that do not have REC markets are excluded from this calculation. 
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Table 1. Summary statistics – daily-level data. 

Variable Mean Std. Dev. Min. Max. 
Wholesale price (USD/MWh) 53.50 32.00 -0.72 1,030.72 
Expenditure per unit (USD/MWh) 56.74 33.14 0 1,029.88 
Total generation (MWh) 1,328,664.18 2,935,004.03 6,886.96 17,633,070 
Generation by fuel (MWh)     

Fossil, nuclear, & hydro 1,266,497.55 2,846,794.70 180.97 17,343,006 
Wind 24,932.26 50,092.91 32.78 386,913.03 
Solar PV 1,984.95 7,440.39 0 94,892.77 
Solar thermal 208.01 784.36 0 8,639.32 
Biomass 30,844.12 48,944.73 772.60 194,039.53 
Geothermal 4,128.07 11,044.62 0 41,961.65 
Ocean/tidal 69.21 287.96 0 1,421.92 

Total number of daily observations: 46,851.  
 

 

Daily and hourly wholesale electricity prices were in some cases publicly 

available (e.g., US, Canada, Australia, and New Zealand), but most were purchased from 

Platts McGraw-Hill (EU and UK) or NordPool Spot (Scandinavian countries). We use 

spot market prices where available. Where spot prices were not available, we use day-

ahead prices.11  All prices (including FITs and RECs) are converted to constant 2010 US 

dollars using monthly market exchange rates and annual GDP deflators for each 

country.12 Daily total electricity generation data were in most cases publicly available, 

with the exception of the Scandinavian countries  (purchased from Nordpool spot).  Table 

1 presents summary statistics for the daily price and generation data. A detailed guide to 

our data sources is provided in the appendix. 

To our knowledge, data do not exist for daily electricity generation by fuel across 

countries. Our only recourse was to construct it – based on several critical assumptions – 

from daily total generation and monthly- and annual-level generation-by-fuel data:  

• Wind and solar. We impute monthly wind and solar generation for each country 

based on International Energy Agency (IEA) annual generation data in conjunction 

with monthly wind speed and solar radiation data from NASA’s Atmospheric Science 

                                                        
11 For many countries, separate peak and off-peak prices were available. In such cases we create a daily 
average price, weighted by the fraction of hours in the peak- and off-peak periods. For countries whose 
wholesale price and/or quantity data were recorded at sub-daily intervals, we computed a quantity-weighted 
average price for the day. 
12 Exchange rates are from the Federal Reserve Economic Data (FRED) database of the St. Louis Fed. GDP 
deflator data are from the World Bank Development Indicators database. 
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Data Center. Daily wind and solar generation is then found by dividing imputed 

monthly generation by the number of days in the month. 

• Biomass, geothermal, and ocean. Daily biomass, geothermal, and ocean generation is 

calculated as a simple daily average based on IEA annual generation data, by dividing 

annual generation by the number of days in the year. 

• Fossil fuels, nuclear, and hydro. Subtracting the sum of the above daily generation 

values for wind, solar, biomass, geothermal, and ocean from total daily generation 

yields a measure of daily residual generation that must be met by conventional fuels. 

It does not matter what proportion of daily residual demand is met by nuclear, hydro, 

coal, oil, or natural gas, since all generation from these sources is paid the same 

wholesale market price of electricity.13 On average, in our sample these fuels make 

up roughly 95 percent of total generation under our assumptions, which is realistic.14 

Clearly, these constructed data are less-than-ideal. Even so, our assumptions are, to us, 

the most natural given the constraints of the monthly- and annual-level data that were 

available. An obvious issue, however, is whether our choices in constructing these data 

are somehow driving our empirical results. To alleviate this concern, in Section 4.5 we 

estimate a model that is identical to our main model in every way except that our imputed 

daily generation values play no role in the estimation. The results are entirely consistent 

with those estimated from the main model, in which the daily generation data are used. 

 

4.2. Measuring Short-Run Electricity Expenditure Risk 

When describing a stochastic economic outcome like total electricity expenditures per 

unit, variance is, in every practical sense, synonymous with risk. As such, our dependent 

variable is (log) quarterly variance in electricity expenditures per unit at the country level. 

We first construct daily electricity expenditure per unit, denoted 𝑃�𝑖,𝑡 where 𝑖 and 𝑡 index 

country and day, as a weighted average electricity price. For countries with FIT at date 𝑡, 

 
𝑃�𝑖,𝑡 =

∑ 𝑇𝑖𝑖,𝑡𝑄𝑖𝑖,𝑡𝑖 + 𝑃𝑖,𝑡 ∑ 𝑄𝑖𝑖,𝑡𝑖

𝑄𝑖,𝑡𝑡𝑡𝑡𝑡𝑡
, (1a) 

                                                        
13 Some countries do have FITs for small-scale hydro. We do not have data on small hydro, but assume the 
proportion of small hydro in total hydro generation to be negligible. 
14 As a point of reference, in 2009 the U.S. generated approximately 4 percent of its electricity from non-
hydro RES-E (EIA 2010). 
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where 𝑇𝑖𝑖,𝑡 is the FIT paid per unit to eligible source 𝑗, 𝑄𝑖𝑖,𝑡 is generation by source 𝑗, 𝑃𝑖,𝑡 

is the wholesale electricity price, 𝑄𝑖𝑖,𝑡 is generation by ineligible source 𝑘, and  𝑄𝑖,𝑡𝑡𝑡𝑡𝑡𝑡 ≡

∑ 𝑄𝑖𝑖,𝑡𝑖 + ∑ 𝑄𝑖𝑖,𝑡𝑖 . For countries with RPS at date 𝑡, 

 
𝑃�𝑖,𝑡 =

(𝑃𝑖,𝑡 + 𝑅𝑖,𝑡)∑ 𝑄𝑖𝑖,𝑡𝑖 + 𝑃𝑖,𝑡 ∑ 𝑄𝑖𝑖,𝑡𝑖

𝑄𝑖,𝑡𝑡𝑡𝑡𝑡𝑡
, (1b) 

where 𝑅𝑖,𝑡 is the REC price. For countries with neither FIT nor RPS, 

 
𝑃�𝑖,𝑡 =

𝑃𝑖,𝑡 ∑ 𝑄𝑖𝑖,𝑡𝑖

𝑄𝑖,𝑡𝑡𝑡𝑡𝑡𝑡
. (1c) 

For the small fraction of our sample in which a country has both FIT and RPS schemes at 

the same time, we are unable to observe which eligible producers elect to receive the FIT 

versus those who participate in the RPS/REC program. Our working assumption is that 

all eligible production in a given year is allocated to the policy option that results in the 

highest average payment per unit. 

Once 𝑃�𝑖,𝑡  was calculated for each country and day in our sample, we then 

computed 𝑉𝑖,𝑠 ≡ log�𝑣𝑣𝑣[𝑃�𝑖,𝑡𝑡𝑠]�, where 𝑠 indexes quarter. Figure 2 displays 𝑉𝑖,𝑠 for each 

country in our sample, and indicates over which interval of the sample the country had 

either a FIT or RPS scheme in place. Our key variables of inference are dummy 

indicators for whether a country had a FIT (for at least one fuel) or RPS requirement in a 

given quarter. Table 2 presents summary statistics for our dependent variable and 

quarterly control variables (explained below), as well as the fraction of observations (by 

country-quarter) for which FIT and RPS schemes were in place. Within our sample, FIT 

is clearly the dominant RES-E support policy, with 54 percent of country-quarters having 

an active FIT, in contrast to only 19 percent of country-quarters with an RPS.  Moreover, 

it is clear that FIT payments are substantially different across different renewable fuels, 

reflecting their differing costs. The average FIT payment for wind, one of the cheaper 

renewable fuels, is $0.05/KWh, whereas the average FIT payment for solar PV, one of 

the most expensive renewable fuels, is $0.17/KWh.  
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Figure 2. Log of quarterly variance in electricity expenditure per unit by country.
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Table 2. Summary statistics – quarterly-level data. 

Variable Mean Std. Dev. Min. Max. 
Variance, wholesale price 357.87 1,269.32 1.10 25,424.79 
Log(variance, wholesale price) 4.68 1.58 0.09 10.14 
Variance, expenditure per MWh  336.70 1,254.12 1.10 25,218.82 
Log(variance, expenditure per 

MWh) 
4.56 1.59 0.09 10.14 

FIT (any fuel) 0.55 0.50 0 1 
RPS  0.18 0.39 0 1 
Log(variance, cost per MWh 

natural gas fired) 
3.22 1.20 0.39 5.83 

Log(variance, cost per MWh oil 
fired) 

3.77 1.24 1.18 6.63 

Log(variance, daily maximum 
temperature within country) 

2.66 0.71 0.24 4.19 

Log(population – millions) 2.68 1.27 1.35 5.74 
Log(GDP – trillions, 2014 USD) -0.53 1.33 -2.96 2.74 
Log(CO2 emissions – billion 

metric tons) 
-1.94 1.45 -3.33 1.80 

Total wind generation capacity 
(GW)  

4.28 8.09 0.01 46.38 

Total solar PV generation 
capacity (GW) 

0.73 2.49 0 24.18 

FIT payments by fuel (USD/KWh)     
Wind 0.05 0.07 0 0.33 
Solar PV 0.18 0.25 0 0.88 
Biomass 0.05 0.08 0 0.40 
Geothermal 0.08 0.19 0 1.08 
Ocean/tidal 0.05 0.19 0 1.08 

RPS requirement (percentage) 1.76 4.08 0 18.2 
Change in RPS requirement from 

same quarter, previous year 
0.16 0.43 0 2.3 

NOTE: (i) Total number of quarterly observations is 519. (ii) The means for FIT and RPS are interpreted as 
the fraction of total quarterly observations for which each policy was in effect. (iii) All monetary values 
expressed in constant 2010 USD, unless otherwise noted. 

 

 

4.3. Regressions 

We use ordinary least squares (OLS) to estimate the following regression equation: 

 𝑉𝑖,𝑠 = 𝛽𝐹𝐹𝐹𝐹𝐹𝑇𝑖,𝑠 + 𝛽𝑅𝑅𝑅𝑅𝑃𝑆𝑖,𝑠 + 𝛿𝑋𝑖,𝑠 + 𝜂𝑍𝑖,𝑠−4 + 𝛼𝑖 + 𝜃𝑠 + 𝛾𝑦 + 𝜀𝑖,𝑡, (2) 

where 𝐹𝐹𝑇𝑖,𝑠  and 𝑅𝑃𝑆𝑖,𝑠  are the policy dummies, 𝛼𝑖  are country fixed effects, 𝜃𝑠  are 

quarterly fixed effects,15 and 𝛾𝑦 are year fixed effects. 𝑋𝑖,𝑠 is a vector of quarterly control 

variables. 𝑍𝑖,𝑠−4 a vector of (same quarter, previous year) lagged variables.  

                                                        
15  More accurately, 𝜃𝑠  are seasonal fixed effects—we switch Q1-Q3 and Q2-Q4 for countries in the 
southern hemisphere. 
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First, because natural gas (predominantly) and oil are typically seen as the 

marginal fuels in electricity generation, the contemporaneous variation in their market 

prices should affect the variation in the wholesale price of electricity. To capture this, we 

compute the cost per MWh of natural gas- and oil-fired electricity at the prevailing daily 

spot prices using the relevant conversion factors, and calculate the (log) quarterly 

variances of each.16 We use daily Brent crude oil and Henry Hub natural gas spot prices, 

as we consider these to be reasonable global benchmark prices for each resource. Second, 

we control for the effect of temperature-related demand shocks by including the (log) 

quarterly variance in country 𝑖’s daily maximum temperature.17 Third, potential socio-

economic effects related to economy size and population are captured by log(GDP) and 

log(population). Fourth, to control for possible effects related to other carbon emissions 

reduction policies (for example, emissions trading schemes), we include log(CO2 

emissions).  

Our lagged explanatory variables are as follows. First, as solar PV and wind 

generation are the two predominant RES-E technologies, greater capacity already in place 

should reduce the supply curve effect of either support policy. On the other hand, it 

should increase the fixed-price effect of FIT policy on the variance in electricity 

expenditures, because a higher proportion of generation would be receiving the FIT 

payment. We thus include (lagged) total solar PV and wind generation capacities. 

Because the level of capacity investment is in part endogenously determined by the 

support policy, to circumvent the clear endogeneity issue we use lagged values. 

Alternatively, to examine the effects of specific policy characteristics, we include the FIT 

payments to solar PV and wind. FIT payments in period 𝑡  are embedded in our 

calculation of  𝑉𝑖,𝑠, so we naturally wish to avoid having an embedded component of our 

dependent variable on the right-hand side of our regression equation—hence the use of a 

lag.  

Finally, we examine the effect of a change in the RPS requirement to capture the 

incremental effect of increased stringency in RPS policy on new investment in RES-E 

                                                        
16 The conversion factors are 10.1 Mcf per MWh for natural gas and 1.75 barrels per MWh for oil. Source: 
EIA http://www.eia.gov/tools/faqs/faq.cfm?id=667&t=2 
17 Daily maximum temperature data are in degrees Celsius, and for each country are calculated as a 
national-level average across weather stations. Collected from NOAA (Menne et al. 2012a, b). 

http://www.eia.gov/tools/faqs/faq.cfm?id=667&t=2
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generation. The intuition here is related to the idea of a binding versus non-binding RPS 

(Shrimali and Kniefel 2011).18 By isolating the incremental RPS requirement, we are able 

to better observe the true incremental quarterly supply curve effect of the RPS, as 

opposed to the cumulative effect, which may in some cases include preexisting RES-E 

capacity. 

 

4.4. Estimation Results 

Table 3 presents our estimation results. We find a robust, statistically significant 

reduction in the variance of electricity expenditures per unit under both FIT and RPS, 

which we consider to be convincing evidence of the supply curve effect hypothesized in 

Section 3. Moreover, our estimates consistently suggest FIT has a qualitatively stronger 

effect in suppressing expenditure risk per unit due to the fixed-price effect, although for 

each specification we are unable to reject the null hypothesis that the estimated FIT and 

RPS coefficients are statistically equivalent.19 The key implication of this result is an 

additional benefit emanating from RES-E support policies that to our knowledge has been 

previously overlooked in the economic and policy literature. Specifically, retail electricity 

providers face more stable wholesale prices in the short run the greater is RES-E 

generation capacity. Thus, incentive schemes such as FIT and RPS/REC that boost 

investment in RES-E generation reduce risk not only for investors but also throughout the 

electricity market as a whole. This reduction in short-run price risk is likely to lead to 

lower risk  premiums  passed  on to electricity consumers and fewer resources devoted  to 

risk management strategies such as hedging and futures trading, in addition to a 

potentially lower equilibrium wholesale price as shown by Sáenz de Meira et al. (2008). 

A second, subtler implication relates to economic welfare and the costs ofmeeting 

peak demand. Our result, combined with that of Sáenz de Meira et al. (2008), suggests 

that as support policies stimulate greater RES-E generation, the most expensive ‘peaker’  

 
                                                        
18 For example, say an RPS requirement of 10 percent is implemented in a country that already generates 
12 percent of its supply from RES-E. The RPS would be non-binding, because no new renewable 
generation would need to be installed to meet the requirement. Shrimali and Kniefel (2011) in fact find a 
negative effect of RPS on RES-E penetration at the US state level. This is because many states consider 
existing RES-E capacity as eligible under the policy, undermining the promotion of investment in new 
capacity. 
19 For model (4), we are able to reject the null of equivalence at roughly 85% confidence. 
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Table 3.  OLS estimates. 

Variable (1) (2) (3) (4) (5) 
FIT (any fuel) -0.52** 

(0.19) 
-0.59** 
(0.20) 

-0.59** 
(0.19) 

-0.58** 
(0.18) 

-0.63*** 
(0.17) 

RPS -0.48*** 
(0.11) 

-0.40*** 
(0.09) 

-0.39*** 
(0.09) 

-0.32** 
(0.09) 

-0.31 
(0.22) 

Log(variance, cost per MWh natural 
gas fired) 

0.16*** 
(0.03) 

0.16*** 
(0.03) 

0.16*** 
(0.03) 

0.24*** 
(0.02) 

0.29*** 
(0.04) 

Log(variance, cost per MWh oil fired) 0.10  
(0.08) 

0.10  
(0.08) 

0.10  
(0.08) 

0.12 
(0.07) 

0.07 
(0.05) 

Log(variance, daily maximum 
temperature) 

  0.06 
(0.07) 

0.13 
(0.07) 

0.05 
(0.13) 

Log(population)  11.50 
(7.99) 

11.00 
(8.05) 

7.98 
(6.88) 

6.80 
(11.42) 

Log(GDP)  -0.57 
(1.04) 

-0.52 
(1.05) 

-1.15 
(0.68) 

-0.12 
(1.25) 

Log(CO2 emissions)  0.14 
(1.53) 

0.10 
(1.56) 

0.04 
(1.71) 

0.19 
(1.61) 

Total wind generation capacity †     -0.02 
(0.01) 

 

Total solar PV generation capacity †     -0.08 
(0.05) 

 

FIT payment to wind †      -0.99 
(0.58) 

FIT payment to solar PV †     -1.49 
(3.21) 

Change in RPS requirement     -0.06 
(0.20) 

Constant 3.42*** 
(0.38) 

-31.65 
(25.85) 

-30.19 
(26.02) 

-22.00 
(22.07) 

-11.03 
(28.99) 

Number observations 519 519 519 500 445 
𝑅2 0.58 0.58 0.58 0.61 0.60 
NOTES: All models include country, year, and quarter fixed effects with robust standard errors clustered at 
the country-group level. †Indicates lagged value. * p<0.10, ** p<0.05, *** p<0.01 
 

 

plants – i.e., those at the steepest section of the conventional electricity supply curve – are 

less likely to be needed in the event of an unusually intense positive demand shock. 

Greater RES-E generation suppresses the transfer of economic surplus from consumers to 

producers when such demand spikes occur under a deregulated power market regime. 

Suppliers capture fewer windfall profits, because positive demand shocks do not result in 

concomitant wholesale price shocks that are as severe as they might otherwise be without 

RES-E generation. 

To get a better sense of what our estimates imply in terms of magnitudes, consider 

the following back-of-the-envelope calculations. From Table 2, the sample mean of 
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log�𝑣𝑣𝑣[𝑃�𝑖,𝑡𝑡𝑠]�  is 4.56, which translates to a variance of exp(4.56) = 95.58  and a 

standard deviation of 9.78 USD/MWh. If implementing a FIT reduces log�𝑣𝑣𝑣[𝑃�𝑖,𝑡𝑡𝑠]� 

by 0.6, this implies nearly a 45 percent reduction in variance to exp(3.96) = 52.46, 

which is roughly a 26 percent reduction in the standard deviation to 7.24 USD/MWh.20 

Similarly, if implementing an RPS reduces log�𝑣𝑣𝑣[𝑃�𝑖,𝑡𝑡𝑠]�  by 0.4, the variance in 

electricity expenditures per unit is reduced by about 33 percent to 64.07, and the standard 

deviation is reduced by 18 percent to 8.00 USD/MWh. These are clearly non-trivial 

reductions, implying the distribution of electricity expenditures per unit tightens 

considerably as a result of the additional RES-E generation stimulated by these support 

schemes. 

Examining our other coefficient estimates, we find – not surprisingly – that the 

quarterly variation in the cost per MWh of natural gas-fired electricity is a strong 

determinant of the variation in per-unit electricity expenditures. The variance in the cost 

per MWh of oil-fired electricity has no statistically significant effect, which likely 

reflects the relatively sparse use of oil in our sample of countries as a fuel for electricity 

generation. No coefficient estimate for any other covariate—variations in temperature, 

GDP, population, CO2 emissions, RES-E capacities, or specific policy features (FIT 

payments and RPS requirements)—is statistically significant. It is clear from the R-

squared values for each regression model that adding these covariates does not improve 

overall explanatory power. The unexplained variation in log�𝑣𝑣𝑣[𝑃�𝑖,𝑡𝑡𝑠]� may be due to 

random events such as unobservable transmission constraints, negative supply shocks, or 

any number of other factors. 

 

4.5.  Isolating the Supply-Curve Effect 

To provide additional support for our main hypothesis, we run the exact same regressions 

presented in Table 3, except we use (log) quarterly variance of the wholesale electricity 

price as the dependent variable. This allows us to isolate the supply-curve effect as the 

dominant factor in reducing the short-run variance in total electricity expenditures per 
                                                        
20 As a mathematical curiosity, the percentage changes in variance and standard deviation are uniform 
regardless of the starting point. To see this, one can simply repeat the exercise for a reduction of 0.6 in 
log�𝑣𝑣𝑣[𝑃�𝑖,𝑡𝑡𝑠]� from both the minimum and maximum values in Table 2; the reduction in variance is 45 
percent and the reduction in standard deviation is 26 percent in either case. 
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unit. Also, comparison to the coefficient estimates in Table 3 gives us some idea of the 

magnitude of the fixed-price effect for FIT. A third advantage is that it eliminates any 

concern that our results are somehow being driven by some other factor related to our 

construction of the daily generation-by-fuel data, because in this case they in no way 

enter into the realized value of the dependent variable.  

Table 4 presents these results, which are entirely consistent with our two hypotheses, 

given the results in Table 3. The coefficients are essentially identical for RPS. For FIT 

the coefficient estimates are between 0.04 and 0.1 lower (in absolute value) than their 

counterparts in Table 3, implying the majority of the reduction in electricity expenditure 

risk under FIT is related to the supply-curve effect, with an additional reduction likely 

resulting from the fixed-price effect. Note, however, that the coefficient estimates for 

RPS are still slightly lower than those for FIT. One explanation for this might be that 

because RES-E generation is not uniformly distributed throughout the day, our 

calculation of daily expenditures on RES-E under RPS overestimates aggregate 

expenditure per unit and therefore variance for country-quarters with an RPS.21 As a 

result, our estimates of the effect of RPS are potentially biased toward zero. 

In terms of magnitudes, this means that for the 45 percent reduction in electricity 

expenditure variance associated with a coefficient of 0.6 on FIT in Table 3 calculated 

above, the supply-curve effect accounts for roughly a 40 percent percentage point 

reduction and the fixed-price effect the other 5 percentage points. For the associated 26 

percent reduction in standard deviation, roughly 22 percentage points is attributable to the 

supply-curve effect, and 4 percentage points to the fixed-price effect. Given these results, 

we are confident that we have identified the supply-curve effect as the main source of the 

reduction in the short-run variance of electricity expenditure per unit related to the 

implementation of a RES-E support policy. 

 

 

 

                                                        
21 Wind power, for example, is known to receive a generally lower average payment than other fuels 
precisely because spot prices are lower (possibly negative) when wind power overloads the system (Lively 
2009). If the requisite data were available, the use of an intraday weighted-average for wind might alleviate 
this issue. Note that the same issue does not arise under FIT, as the price paid to wind is fixed. 
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Table 4.  OLS estimates. Dependent variable: log�𝑣𝑣𝑣[𝑃𝑖,𝑡𝑡𝑠]�. 

Variable (1) (2) (3) (4) (5) 
FIT (any fuel) -0.46* 

(0.23) 
-0.51* 
(0.24) 

-0.51* 
(0.24) 

-0.48* 
(0.23) 

-0.58** 
(0.21) 

RPS -0.42*** 
(0.12) 

-0.41*** 
(0.11) 

-0.40*** 
(0.11) 

-0.32*** 
(0.11) 

-0.36 
(0.25) 

Log(variance, cost per MWh natural 
gas fired) 

0.16*** 
(0.03) 

0.16*** 
(0.03) 

0.15*** 
(0.03) 

0.23*** 
(0.02) 

0.29*** 
(0.05) 

Log(variance, cost per MWh oil fired) 0.10  
(0.08) 

0.10  
(0.08) 

0.09  
(0.08) 

0.11 
(0.07) 

0.06 
(0.04) 

Log(variance, daily maximum 
temperature) 

  0.04 
(0.06) 

0.09 
(0.06) 

0.01 
(0.13) 

Log(population)  8.56 
(6.74) 

8.26 
(6.76) 

6.85 
(6.20) 

4.13 
(10.12) 

Log(GDP)  -0.46 
(1.11) 

-0.43 
(1.12) 

-1.28 
(0.79) 

-0.08 
(1.31) 

Log(CO2 emissions)  -0.43 
(1.40) 

-0.46 
(1.43) 

-0.58 
(1.65) 

-0.18 
(1.52) 

Total wind generation capacity †     -0.03 
(0.02) 

 

Total solar PV generation capacity †     -0.06 
(0.05) 

 

FIT payment to wind †      1.48 
(2.90) 

FIT payment to solar PV †     -1.08 
(0.62) 

Change in RPS requirement     -0.05 
(0.20) 

Constant 3.24*** 
(0.42) 

-23.29 
(22.00) 

-22.40 
(22.06) 

-19.34 
(20.02) 

-6.26 
(25.96) 

Number observations 519 519 519 500 445 
𝑅2 0.59 0.59 0.59 0.61 0.60 
NOTES: All models include country, year, and quarter fixed effects with robust standard errors clustered at 
the country-group level. †Indicates lagged value. * p<0.10, ** p<0.05, *** p<0.01 
 

 

 

5. Testing for Possible Long-Run Effects 

So far we have examined the effects of RES-E support schemes on the short-run variation 

in aggregate electricity expenditures per unit. What can be said about possible long-run 

effects? Does FIT or RPS lead to a greater long-run reduction in electricity expenditures 

per unit? To answer this question, we begin by reviewing the prediction of Schmalensee’s 

(2012) model of long-run electricity expenditure risk under FIT and RPS. 
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5.1. Schmalensee’s Model of Long-run Electricity Expenditure Risk 

Our empirical findings for short-run effects are in contrast to a theoretical conclusion by 

Schmalensee (2012). He argues that although FIT shields investors in RES-E generation 

from price risk, “Measures that remove market risk from one set of players may simply 

shift it to others and not reduce the risk to society as a whole.” He demonstrates using a 

highly stylized long-run model that the variance in total electricity expenditures may be 

greater under FIT than under RPS. However, this result and conclusion are reliant upon 

several strong assumptions that we argue are unlikely to hold in the real world. Let us say 

at once that our motive here is in no way to disparage Dr. Schmalensee’s work on this 

topic (quite the opposite is true, in fact; his model inspired us to dig deeper into the issue 

and provided us with a clear research question, and for that we are grateful). With this 

disclaimer duly submitted, we offer the following critique of the assumptions supporting 

the assertion that the long-run variance in total electricity expenditures may be greater 

under FIT than under RPS. 

First, the model assumes a fixed demand load and fixed conventional generation 

plant. Aside from the empirical impossibility of testing the model directly (because 

demand load varies both over time and across markets), these two assumptions together 

imply (i) renewable generation automatically displaces conventional generation; and (ii) 

the average cost of conventional electricity automatically rises with greater renewable 

penetration.22 In reality, demand load increases over time in nearly all markets; it is thus 

entirely possible that renewable generation is added over time while conventional 

generation remains constant or even increases. It follows that the average cost of 

conventional electricity would be unaffected by greater renewable penetration. In the 

event that investment in renewable generation outpaces growth in demand load such that 

conventional generation is displaced, over the long-run the natural result would be that 

conventional generation plant is retired, thereby reducing average cost.  

The second questionable assumption is essential to Schmalensee’s result. The 

model assumes the long-run incremental cost of renewable generation 23 —which by 

                                                        
22 Defined as the ratio of renewable generation to conventional generation. 
23 Included in this measure is the marginal rise in the unit cost of conventional electricity brought about by 
greater renewable penetration, which we have already argued is not guaranteed under more realistic 
assumptions. 
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definition depends on the fixed cost of capacity—is constant and always greater than the 

incremental cost of conventional generation. In practice, long-run incremental cost is 

reflected in the levelized cost per unit, a standard metric for comparison of cost 

competitiveness across technologies. 24 It is well-known that levelized costs for major 

renewable technologies like wind and solar have declined precipitously over the past two 

decades—a trend likely to continue. For example, the U.S. Energy Information 

Administration (2011) forecasts that the levelized cost per kWh for wind will be lower 

than that of coal by 2020. Moreover, in the very long run as global stocks of fossil fuels 

like coal and natural gas are exhausted, convex extraction costs and ever-increasing 

scarcity rents will drive the incremental cost of conventional electricity generation far 

above that of nearly all renewables. 

Third, Schmalensee’s is a static model in which the FIT payment and RPS 

requirement do not change over time. In reality, RPS requirements generally increase 

over time (see Figure 2), whereas FIT payments are digressed and are subject to periodic 

review and revision (as explained in Section 2.1). This latter feature of FIT policy is 

important because in the model’s key analytical result the variance in electricity 

expenditures under FIT is increased further relative to RPS when the renewable supply 

curve is flatter. Intuitively, a flatter supply curve implies the quantity of renewables is 

more responsive to cost shocks when price is fixed. Such cost shocks are precisely the 

impetus for including a tariff review and revision clause in FIT policy. 

Based on the above concerns, it is unclear as to whether we should expect the 

long-run variance in electricity expenditures to be greater under FIT than under RPS. A 

more fundamental question remains, however: Is long-run risk more important for 

electricity expenditures than short-run risk? Not necessarily. Future expenditures should 

be discounted using constant market discount rates; it is not clear why stakeholders with 

rational time preference would care more about long-run electricity expenditure risk than 

short-run. Investors have a longer-term view than consumers, but only for as long as it 

takes to earn the desired return-on-investment. Arguably, it is short-run electricity 

expenditure risk that has the most significant impact on stakeholder behavior, even when 

                                                        
24  As a caveat, Joskow (2011) argues that levelized cost is a flawed metric by which to compare 
intermittent generation technologies with “dispatchable” technologies like coal and natural gas, because it 
incorrectly treats the two as a homogenous product governed by the law of one price. 
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it comes to long-lived infrastructure investments or the policy instruments designed to 

incentivize them. For these reasons, we submit that measuring the effects of RPS and FIT 

on short-run electricity expenditure risk provides a more immediately useful insight into 

the economic and practical implications of either policy. Nonetheless, in what follows we 

provide a test (albeit a limited one, due to data constraints) of the long-run effects of FIT 

and RPS policy on the variance of electricity expenditure per unit.  

 

5.2. Basic Empirical Test of Long-Run Effects 

From Figure 2 it is somewhat clear that when countries have no RES-E support policy 

(like New Zealand, for instance) the quarterly variance in electricity expenditures per unit 

seems to be rising over time. Conversely, when countries have a FIT in place, the 

quarterly variance appears generally to be falling over time. When countries have an RPS 

or both RPS and FIT concurrently, there is no obvious trend. This gives us a simple, 

intuitive way to test for the long-run effects of either policy. The test proceeds in two 

stages. 

In the first stage, we begin by parsing our full sample of (log) quarterly variances 

for each country into four categories of subsamples: 1) intervals over which a country had 

no policy (NO_POL); 2) intervals over which a country had a FIT only; 3) intervals over 

which a country had an RPS only; and 4) intervals over which a country had both a FIT 

and an RPS (FIT_RPS). For example, from Figure 2 we see that New Zealand has one 

long interval in our sample of no policy, whereas Sweden has an interval of FIT only, an 

interval of both FIT and RPS, and an interval of RPS only. We repeat this exercise for 

every country in our sample, which gives us a total of 24 distinct country-policy intervals, 

as summarized in Table 5.25 We then run the following regression separately for each 

country (𝑖): 

 𝑉𝑖,𝑠 = 𝛽𝑖
𝑁𝑁_𝑅𝑁𝑃 + 𝛽𝑖𝐹𝐹𝐹𝐹𝐹𝑇𝑖,𝑠 + 𝛽𝑖𝑅𝑅𝑅𝑅𝑃𝑆𝑖,𝑠 + 𝛽𝑖

𝐹𝐹𝐹_𝑅𝑅𝑅𝐹𝐹𝑇_𝑅𝑃𝑆𝑖,𝑠

+ 𝛾𝑖
𝑁𝑁_𝑅𝑁𝑃𝑇𝑠 + 𝛾𝑖𝐹𝐹𝐹𝐹𝐹𝑇𝑖,𝑠𝑇𝑠 + 𝛾𝑖𝑅𝑅𝑅𝑅𝑃𝑆𝑖,𝑠𝑇𝑠

+ 𝛾𝑖
𝐹𝐹𝐹_𝑅𝑅𝑅𝐹𝐹𝑇_𝑅𝑃𝑆𝑖,𝑠𝑇𝑠 + 𝛿𝑋𝑖,𝑠 + 𝜃𝑠 + 𝜂𝑖,𝑠, 

(3) 

 

                                                        
25 Hungary is dropped, as there are too few quarters within our sample for any meaningful inference to be 
made. For Denmark, the two separate intervals of FIT are counted as one. 
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Table 5. List of distinct country-policy intervals (within sample). 
Observation Country Policy Interval 
1 Australia FIT_RPS 2011Q1 – 2011Q4 
2 Austria FIT 2006Q1 – 2011Q4 
3 Belgium FIT 2006Q1 – 2011Q4 
4 Canada NO_POL 2003Q2 – 2008Q4 
5 Canada FIT 2009Q1 – 2011Q4 
6 Czech Republic FIT 2008Q1 – 2011Q4 
7 Denmark FIT 2000Q1 – 2002Q4, 2009Q1 – 2011Q4 
8 Denmark NO_POL 2003Q1 – 2008Q4 
9 Finland NO_POL 2000Q1 – 2010Q4 
10 Finland FIT 2011Q1 – 2011Q4 
11 France FIT 2006Q1 – 2011Q4 
12 Germany FIT 2006Q1 – 2011Q4 
13 Netherlands FIT 2006Q1 – 2011Q4 
14 New Zealand NO_POL 2000Q1 – 2011Q4 
15 Norway NO_POL 2000Q1 – 2011Q4 
16 Poland RPS 2010Q3 – 2011Q4 
17 Spain FIT 2006Q1 – 2011Q4 
18 Sweden FIT 2000Q1 – 2005Q4 
19 Sweden FIT_RPS 2003Q1 – 2005Q4 
20 Sweden RPS 2006Q1 – 2011Q4 
21 Switzerland FIT 2006Q1 – 2011Q4 
22 United Kingdom FIT_RPS 2010Q1 – 2011Q4 
23 United States RPS 2002Q1 – 2005Q4 
24 United States FIT_RPS 2006Q1 – 2011Q4 
 

 

 

where 𝐹𝐹𝑇𝑖,𝑠,𝑅𝑃𝑆𝑖,𝑠, and 𝐹𝐹𝑇_𝑅𝑃𝑆𝑖,𝑠 are binary indicator variables that take the value “1” 

if in quarter 𝑠 country 𝑖 had (respectively) a FIT, an RPS, or both FIT and RPS. These 

indicator variables are then interacted with a simple quarterly trend (𝑇𝑠 ). 26  𝑋𝑖,𝑠  are 

quarterly covariates and 𝜃𝑠 are seasonal fixed effects.  

From these regressions, the coefficient estimates in which we are interested are 

𝛾�𝑖
𝑁𝑁_𝑅𝑁𝑃 , 𝛾�𝑖𝐹𝐹𝐹 , 𝛾�𝑖𝑅𝑅𝑅 , and 𝛾�𝑖

𝐹𝐹𝐹_𝑅𝑅𝑅 —i.e., estimates of the trends in (log) quarterly 

variance  in  electricity  expenditures  per unit for each of the 24  country-policy  intervals  

 

                                                        
26 Note that 𝛽𝑖𝑖 and 𝛾𝑖𝑖 (𝑘 = 𝑁𝑁_𝑃𝑁𝑃,𝐹𝐹𝑇,𝑅𝑃𝑆,𝐹𝐹𝑇_𝑅𝑃𝑆) are identified only when country 𝑖 has policy 𝑘 
over some portion of our sample period. For instance, if a country has only FIT over the entire sample, this 
means only 𝛽𝑖𝐹𝐹𝐹 and 𝛾𝑖𝐹𝐹𝐹 are identified in (3). 
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Figure 3. Estimates of trend in log (𝑣𝑣𝑣[𝑃�𝑖,𝑡∈𝑠]) for each country-policy interval (see Table 5). 

 

 

listed in Table 5. Figure 3 displays these estimates. As a benchmark, we show the mean 

estimated trend across the five country-policy intervals with no RES-E support policy.  

From Figure 3 it is clear that compared to countries with no policy, countries with 

a FIT seem to experience a decline over time in the quarterly variance in electricity 

expenditures per unit, whereas for countries with either an RPS or both policies combined 

the results are mixed. The second stage of our long-run analysis is thus to regress the 

estimated trends on a set of policy indicator variables: 

 𝚪� = 𝜑𝑁𝑁_𝑅𝑁𝑃 + 𝜑𝐹𝐹𝐹𝐹𝐹𝑇𝑖 + 𝜑𝑅𝑅𝑅𝑅𝑃𝑆𝑖 + 𝜑𝐹𝐹𝐹_𝑅𝑅𝑅𝐹𝐹𝑇_𝑅𝑃𝑆𝑖 + 𝜇𝑖, (4) 

where 𝚪�  is a column vector of the estimates 𝛾�𝑖
𝑁𝑁_𝑅𝑁𝑃, 𝛾�𝑖𝐹𝐹𝐹, 𝛾�𝑖𝑅𝑅𝑅, and 𝛾�𝑖

𝐹𝐹𝐹_𝑅𝑅𝑅 for each of 

the 24 country-policy intervals in Table 5. Regression equation (4) represents a simple 𝑡-

test of means.  

One issue with estimating (4), however, is that 𝚪�  is automatically heteroskedastic 

because each element is itself an estimate with its own unique level of precision. 

Hanushek (1974) proposed FGLS as a solution to this ‘estimated dependent variable’ 
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problem. Lewis and Linzer (2005) improved on the Hanushek FGLS procedure, however 

their method does not ensure a positive estimate of the variance of the regression. In fact, 

this turned out to be an issue in our estimation. We therefore followed their alternative 

suggestion of using Efron standard errors  (Efron 1982).  Lewis and Linzer showed using 

monte carlo simulations that Efron standard errors performed nearly as well as their 

FGLS standard errors and are likely to produce conservative estimates.  
Table 6 presents the results of our second stage, using various combinations of 

additional control variables to estimate 𝚪�  in the first stage. To the extent that these 

estimates are representative of long-run trends in the variance of quarterly electricity 

expenditure per unit that occur under each policy, it is clear that only countries with a FIT 

experience a statistically significant reduction in per-unit electricity expenditure risk over 

time. RPS appears to have no effect, whereas the results are mixed for countries with 

both FIT and RPS simultaneously. 

As in our short-run analysis, the results of our long-run estimation procedure 

stand in contrast to Schmalensee’s (2012) conclusion that RPS may lead to a lower long-

run variance in total electricity expenditures than FIT. If, as our estimates suggest, the 

quarterly variance in per-unit expenditures declines over time with FIT but not with RPS, 

then with a fixed demand load (a key assumption of Schmalensee’s model) it follows that 

long-run total electricity expenditure risk would be unlikely to be lower under FIT than 

under RPS. However, we are careful here not to claim that our long-run results are not 

definitive evidence. Given the limited sample period of our dataset, one might reasonably 

argue that we do not have sufficiently long time series in stage one or enough 

observations of trends in stage two to interpret these estimates as true long-run effects. It 

is thus with great caution that we claim to be able to extrapolate trustworthy conclusions 

about RES-E policy effects on long-run trends in per-unit electricity expenditure risk, 

despite the rather strong statistical significance of the FIT and no-policy estimates.  

 

6. Conclusion 

The goal of this research has been to examine empirically the effect that economic 

support policies for renewable-energy-source electricity (RES-E) generation have on the 

variation in  wholesale  electricity  expenditures per unit.  We offered a simple theoretical 
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Table 6. Estimated effects of RES-E policies on the long-run trend in log (𝑣𝑣𝑣[𝑃�𝑖,𝑡∈𝑠]). 

 (1) (2) (3) (4) (5) (6) 
FIT -0.13*** 

(0.02) 
-0.10*** 

(0.02) 
-0.09*** 

(0.03) 
-0.11*** 

(0.02) 
-0.16*** 

(0.03) 
-0.14*** 

(0.06) 
RPS 0.06 

(0.10) 
0.30 

(0.39) 
-0.02 
(0.03) 

-0.03 
(0.03) 

-0.30 
(0.33) 

-0.25 
(0.27) 

FIT and RPS -0.03 
(0.14) 

0.13 
(0.23) 

-0.47 
(0.40) 

-0.31 
(0.20) 

-0.28*** 
(0.02) 

-0.26*** 
(0.04) 

No policy 0.08*** 
(0.01) 

0.07*** 
(0.01) 

0.07*** 
(0.01) 

0.08*** 
(0.00) 

0.14*** 
(0.01) 

0.14*** 
(0.03) 

Control variables in first-stage     
Log(variance, cost per 

MWh natural gas fired) 
 X X X X X 

Seasonal fixed effects   X X X X 
Log(variance, cost per 

MWh oil fired) 
   X X X 

Log(variance, daily 
maximum temperature) 

    X X 

Log(GDP)      X 
Observations 24 24 22 22 21 21 
𝑅2 0.34 0.29 0.40 0.47 0.46 0.27 
Efron standard errors reported. * p<0.10, ** p<0.05, ***p<0.01 
 

 

demonstration that such policies should reduce this variation – and, by association, 

wholesale price risk faced by electrical utilities – primarily because greater RES-E shifts 

the conventional electricity supply curve outward, implying a stochastic demand curve 

intersects it at a flatter portion. This leads to a tighter distribution of equilibrium 

wholesale prices. As feed-in tariffs (FIT) and renewable portfolio standards (RPS) are 

arguably the two dominant RES-E support policies worldwide, we estimated the effect 

each of these policies has on the (log) quarterly variance in electricity expenditures per 

unit using an unbalanced panel dataset of 19 countries over the period 2000-2011. Our 

results support our main hypothesis. In addition, we find that FIT is likely to reduce the 

variance electricity expenditure per unit by more than RPS, which we argue is related to 

the fixed-price design. 

  This result is, to our knowledge, new to the literature. It demonstrates a 

previously overlooked benefit of RES-E support policies. As electricity markets have 

moved toward a deregulated structure, wholesale price variability has increased, spurring 
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retail electricity providers to devote significant resources to risk management. The costs 

of such activity, and of the pure risk itself, are ultimately borne by electricity consumers. 

We have shown that any support policy that stimulates RES-E generation in the short-run 

is likely to reduce per-unit electricity expenditure risk to utility providers. 

 We have argued that the short-run variance in electricity expenditure per unit is 

the most relevant metric by which to measure risk in electricity markets. At any rate, it is 

the only one we are best able to measure given the available data. Additionally, in 

contrast to the case originally made by Schmalensee (2012), we find that the long-run 

variance in total electricity expenditures for a given load is unlikely to be greater under 

FIT than under RPS, to the extent that a simple time trend in short-run variance translates 

to long-run variance. Ultimately, a number of long-run factors that are not captured by 

our model cloud our inferential capabilities about long-run variability. More research is 

needed to study long-run behavior—we simply do not have detailed enough data for 

enough countries over a long enough time span to test the hypothesis definitively in a 

long-run setting. 

 In closing, we believe our results have relevance beyond just RES-E generation. 

A similar intuition holds for any source of electricity generation – for example, nuclear – 

that enters into the generation mix at the base and not at the margin. Shifting the 

conventional electricity supply curve outward should reduce the short-run variation in 

wholesale prices just the same. A worthwhile analogue of this study would be to examine 

whether greater nuclear generation capacity has a similar, statistically significant result 

on wholesale prices.  

 

References 

Amundsen, E. and Mortensen, J.B. (2001). The Danish Green Certificate System: some 
simple analytical results. Energy Economics 23(5), pp. 489-509. 

Benini. M., Marracci, M., Pelacchi, P., and Venturini, A. (2002). Day-ahead market price 
volatility analysis in deregulated electricity markets. Power Engineering Society 
Summer Meeting, 2002 IEEE. Vol. 3. IEEE, 2002. 

Berry, T. and Jaccard, M. (2001). The renewable portfolio standard: design 
considerations and an implementation strategy. Energy Policy 29(4), pp. 263-277.  



30 
 

Böhringer, C. and Rosendahl, K.E. (2010). Green promotes the dirtiest: on the interaction 
between black and green quotas in energy markets. Journal of Regulatory Economics 
37(3), pp. 316-325. 

Buckman, G. (2011). The effectiveness of Renewable Portfolio Standard banding and 
carve-outs in supporting high-cost types of renewable electricity. Energy Policy 
39(7), pp. 4105-4114. 

Butler, L. and Neuhoff, K. (2008). Comparison of feed-in tariff, quota and auction 
mechanisms to support wind power development. Renewable Energy 33(8), pp. 1854-
1867. 

Cory, K., Couture, T., and Kreycik, C. (2009). Feed-in Tariff Policy: Design, 
Implementation, and RPS Policy Interactions. National Renewable Energy 
Laboratory, Technical Report: NREL/TP-6A2-45549.  

Couture, T. and Cory, K. (2009). State Clean Energy Policies Analysis (SCEPA) Project: 
An Analysis of Renewable Energy Feed-In Tariffs in the United States. National 
Renewable Energy Laboratory, Technical Report: NREL/TP-6A2-45551.  

Couture, T. and Gagnon, Y. (2010). An analysis of feed-in tariff remuneration models: 
Implications for renewable energy investment.  Energy Policy 38(2), pp. 955-965. 

Dinica, V. (2006).  Support systems for the diffusion of renewable energy technologies—
an investor perspective. Energy Policy 34(4), pp. 461-480. 

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. 
Philadelphia, PA: Society for Industrial and Applied Mathematics. 

Fell, H. and Linn, J. (2013). Renewable electricity policies, heterogeneity, and cost 
effectiveness. Journal of Environmental Economics and Management 66(3), pp. 688-
707. 

Finon, D. (2006). The Social Efficiency of Instruments for the Promotion of Renewable 
Energies in the Liberalised Power Industry. Annals of Public and Cooperative 
Economics 77(3), pp. 309-343. 

Finon, D. and Menteneau, P. (2004). The Static and Dynamic Efficiency of Instruments 
of Promotion of Renewables. Energy Studies Review 12(1), pp. 53-83. 

Finon, D. and Perez, Y. (2007). The social efficiency of instruments of promotion of 
renewable energies: A transaction-cost perspective. Ecological Economics 62(1), pp. 
77-92. 



31 
 

Fischer, C. (2010). Renewable Portfolio Standards: When Do They Lower Energy 
Prices? The Energy Journal 31(1), pp. 101-119. 

Fischer, C. and Preonas, L. (2010). Combining Policies for Renewable Energy: Is the 
Whole Less Than the Sum of Its Parts? International Review of Environmental and 
Resource Economics 4(1), pp. 51-92. 

Gross, R., Blyth, W., and Heptonstall, P. (2010). Risks, revenues and investment in 
electricity generation: Why policy needs to look beyond costs. Energy Economics 
32(4), pp. 796-804. 

Hanushek, E. (1974). Efficient Estimators for Regressing Regression Coefficient 
Estimates. American Statistician 28(1), pp. 66-67. 

Huber, C., Ryan, L., Ó Gallachóir, B., Resch, G., Polaski, K., and Bazilian, M. (2007). 
Economic modeling of price support mechanisms for renewable energy: Case study 
of Ireland. Energy Policy 35(2), pp. 1172-1185. 

Johnson, E.P. (2014). The cost of carbon dioxide abatement from state renewable 
portfolio standards. Resource and Energy Economics 36(2), PP. 332-350. 

Johnson, E.P. and Oliver, M.E. (2016). Renewable Energy and Wholesale Price 
Variability. IAEE Energy Forum (First Quarter 2016), pp. 25-26. International 
Association for Energy Economics. 

Johnstone, N., Haščič, I., and Popp, D. (2010). Renewable Energy Policies and 
Technological Innovation: Evidence Based on Patent Counts. Environmental and 
Resource Economics 45(1), pp. 133-155. 

Joskow, P. (2011). Comparing the Costs of Intermittent and Dispatchable Electricity 
Generating Technologies. The American Economic Review: Papers and Proceedings 
101(3), pp. 238-241. 

Klein, A., Merkel, E., Pfluger, B., Held, A., Ragwitz, M., Resch, G., and Busch, S. 
(2010). Evaluation of different feed-in tariff design options – Best practice paper for 
the International Feed-in Cooperation (3rd Ed.). Energy Economics Group & 
Fraunhofer ISI. 

Lewis, J.B., and D. A. Linzer (2005). Estimating Regression Models in Which the 
Dependent Variable is Based on Estimates. Political Analysis 13, pp. 345-364. 



32 
 

Lively, M. B. (2009). Renewable electric power—too much of a good thing: looking at 
ERCOT. USAEE Dialogue, 17(2), 21-27. United States Association for Energy 
Economics. 

Lüthi, S., and Wüstenhagen, R. (2012). The price of policy risk – Empirical insights from 
choice experiments with European photovoltaic project developers. Energy 
Economics 34(4), pp. 1001-1011. 

Madlener, R. and Stagl, S. (2005). Sustainability-guided promotion of renewable 
electricity generation. Ecological Economics 53(2), pp. 147-167. 

Mendonça, M., Jacobs, D., and Sovacool, B. (2010). Powering the Green Economy: The 
Feed-in Tariff Handbook. Earthscan, London, UK. 

Menne, M.J., Durre, I.,. Vose, R.S, Gleason, B.E., and Houston, T.G. (2012a). An 
overview of the Global Historical Climatology Network - Daily Database. Journal of 
Atmospheric and Oceanic Technology, 29, pp. 897-910.  

Menne, M.J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X., Anthony, S., 
Ray, R., Vose, R.S., Gleason, B.E., and Houston, T.G. (2012b) Global Historical 
Climatology Network - Daily (GHCN-Daily), Version 3. NOAA National Climatic 
Data Center. 

Menteneau, P., Finon, D., and Lamy, M. (2003). Prices versus quantities: choosing 
policies for promoting the development of renewable energy. Energy Policy 31(8), 
pp. 799-812. 

Mitchell, C. (2000). The England and Wales Non-Fossil Fuel Obligation: History and 
Lessons. Annual Review of Energy and the Environment 25, pp. 285-312. 

Mulder, A. (2008). Do economic instruments matter? Wind turbine investments in the 
EU(15). Energy Economics 30(6), pp. 2980-2991. 

Palmer, K. and Burtraw, D. (2005). Cost-effectiveness of renewable electricity policies. 
Energy Economics 27(6), pp. 873-894. 

Popp, D., Haščič, I., and Medhi, N. (2011). Technology and the diffusion of renewable 
energy. Energy Economics 33(4), pp. 648-662. 

Ringel, M. (2006). Fostering the use of renewable energies in the European Union: the 
race between feed-in tariffs and green certificates. Renewable Energy 31(1), pp. 1-17. 



33 
 

Sáenz de Meira, G., del Río González, P., and Vizcaíno, I.  (2008). Analysing the impact 
of renewable electricity support schemes on power prices: The case of wind 
electricity in Spain. Energy Policy 36(9), pp. 3345-3359. 

Schmalensee, R. (2012). Evaluating Policies to Increase Electricity Generation from 
Renewable Energy. Review of Environmental Economics and Policy 6(1), pp. 45-64. 

Shrimali, G. and Kniefel, J. (2011). Are government policies effective in promoting 
deployment of renewable electricity resources? Energy Policy 39(9), pp. 4726-4741. 

Söderholm, P. and Klaasen, G. (2007). Wind Power in Europe: A Simultaneous 
Innovation-Diffusion Model. Environmental and Resource Economics 36(2), pp. 163-
190. 

Tamás, M.M., Bade Shrestha, S.O., and Zhou, H. (2010). Feed-in tariff and tradable 
green certificate in oligopoly. Energy Policy 38(8), pp. 4040-4047. 

Timilsina, G., Kurdgelashvili, L., and Narbel, P. (2012). Solar energy: Markets, 
economics, and policies. Renewable and Sustainable Energy Reviews 16(1), pp. 449-
465. 

U.S. Energy Information Administration (2010). Annual Energy Review 2009. United 
States Energy Information Administration, Office of Energy Markets and End Use, 
U.S. Dept. of Energy, Washington, D.C 

U.S. Energy Information Administration (2011). Annual Energy Outlook 2011 with 
Projections to 2035. United States Energy Information Administration, Office of 
Integrated and International Energy Analysis, U.S. Dept. of Energy, Washington, 
D.C. 

Wiser, R. and Barbose, G. (2008). Renewables Portfolio Standards in the United States: 
A Status Report with Data Through 2007. Environmental Energy Technologies 
Division, Lawrence Berkeley National Laboratory. 

Wiser, R., Porter, K., and Grace, R. (2005). Evaluating Experience with Renewables 
Portfolio Standards in the United States. Mitigation and Adaptation Strategies for 
Global Change 10(2), pp. 237-263. 

Wozabal, D., Graf, C., & Hirschmann, D. (2014). The effect of intermittent renewables 
on the electricity price variance. OR Spectrum (2014), pp. 1-23. 

 

 



34 
 

Appendix 

Table A1. Detailed list of data sources. 
Data series Source Link Status 
Daily wholesale prices  

Austria; Belgium; 
Czech Rep.; France; 
Germany; Hungary; 
Netherlands; Poland; 
Spain; Switzerland; 
United Kingdom 

Platts-McGraw Hill – 
Europe Power Daily 

http://www.platts.com/products/market
-data-electric-power 

Purchased 

Daily total generation 
Austria; Belgium; 
Czech Rep.; France; 
Germany; Hungary; 
Netherlands; Poland; 
Spain; Switzerland 

European Network of 
Transmission System 
Operators for 
Electricity 
(ENTSOE) 

https://www.entsoe.eu/data/data-
portal/consumption/Pages/default.aspx 

Publicly 
available 

United Kingdom UK National Grid http://www2.nationalgrid.com/uk/Indus
try-information/Electricity-
transmission-operational-data/Data-
Explorer/ 

Publicly 
available 

Daily wholesale prices & total generation combined 
Australia Australian Energy 

Market Operator 
(AEMO) 

http://www.aemo.com.au/Electricity/D
ata/Price-and-Demand/Aggregated-
Price-and-Demand-Data-Files 

Publicly 
available 

Canada (Ontario) Independent 
Electricity System 
Operator (ISEO) of 
Ontario 

http://www.ieso.ca/Pages/Power-
Data/default.aspx - report 

Publicly 
available 

Denmark; Finland; 
Norway;  
Sweden 

Nordpool Spot http://www.nordpoolspot.com/#/nordic/
table 

Purchased 

New Zealand EMI Electricity 
Authority  

http://www.emi.ea.govt.nz/Datasets/Br
owse?parentDirectory=%2FDatasets%2
FWholesale 

Publicly 
available 

USA (ISO-New 
England, PJM, and 
New York ISO) 

ISO New England 
PJM 
New York ISO 

http://www.iso-ne.com/ 
http://www.pjm.com/ 
http://www.nyiso.com/public/index.jsp 

Publicly 
available 

Renewable generation & capacities 
Generation – all 
renewables (annual 
level) 

Int’l. Energy Agency 
–Renewables 
Information Reports 
(2002-2014) 

http://www.oecd-ilibrary.org/statistics Publicly 
available 

CONT’D NEXT 
PAGE 

   

http://www.platts.com/products/market-data-electric-power
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http://www.pjm.com/
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Wind speeds and 
Solar radiation 
(monthly level) 

NASA Atmospheric 
Science Data Center 

https://eosweb.larc.nasa.gov/cgi-
bin/sse/global.cgi?email=skip@larc.nas
a.gov 

Publicly 
available 

Wind generation 
capacity 

Global Wind Energy 
Council (GWEC) 

http://www.gwec.net/global-
figures/interactive-map/ 

Publicly 
available 

Solar generation 
capacity 

European 
Photovoltaic Industry 
Association 

http://solarpowereurope.org/ Purchased 

Policy data 
FIT and RPS (all 
countries) 

Johnstone et al. 
(2010) 

 Shared by N. 
Johnstone 

Renewable Energy Credits (RECs) 
Australia Australian 

Government Clean 
Energy Regulator 

http://www.cleanenergyregulator.gov.a
u/ 

Publicly 
available 

Poland PolPX Monthly 
Market Reports 

http://tge.pl/en/155/raporty-miesieczne Publicly 
available 

Sweden (2000-2004) Swedish Energy 
Agency  

http://www.iea.org/policiesandmeasure
s/pams/sweden/name-21727-en.php 

Publicly 
available 

Sweden (2005-2013) Svensk Kraftmäkling 
(SKM) 

http://skm.se/priceinfo/history/2014/ Publicly 
available 

United Kingdom ePower  http://www.epowerauctions.co.uk/track
record.htm 

Publicly 
available 

USA  Marex Spectron http://www.marexspectron.com/ Purchased 
Miscellaneous 

Daily temperatures National Oceanic and 
Atmospheric 
Administration 
(NOAA) 

http://gis.ncdc.noaa.gov/all-
records/catalog/search/resource/details.
page?id=gov.noaa.ncdc:C00861 

Publicly 
available 

Population; GDP; 
GDP deflator 

World Bank 
Development 
Indicators Databank 

http://databank.worldbank.org/data/rep
orts.aspx?source=world-development-
indicators 

Publicly 
available 

CO2 emissions U.S. Energy 
Information 
Administration 

http://www.eia.gov/environment/data.c
fm#intl 

Publicly 
available 

Exchange rates FRED – St. Louis 
Fed 

https://research.stlouisfed.org/fred2/ Publicly 
available 
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http://www.gwec.net/global-figures/interactive-map/
http://www.gwec.net/global-figures/interactive-map/
http://solarpowereurope.org/
http://www.cleanenergyregulator.gov.au/
http://www.cleanenergyregulator.gov.au/
http://tge.pl/en/155/raporty-miesieczne
http://www.iea.org/policiesandmeasures/pams/sweden/name-21727-en.php
http://www.iea.org/policiesandmeasures/pams/sweden/name-21727-en.php
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