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Abstract

Using a natural experiment in research funding by the National Institutes of Health (NIH)
following the American Recovery and Reinvestment Act (ARRA) of 2009, we study the
NIH’s revealed preference in project selection. We do so by comparing the characteristics
of the projects additionally selected for funding due to an unexpected increase in resources
under the ARRA with those supported through regular NIH budget. We find that the
regular-funded projects are on average of higher quality, as measured by the number of
publications per project and the impact of these publications, than ARRA-funded projects.
Moreover, compared to ARRA projects, regular projects are more likely to produce highest-
impact articles and exhibit greater variance in research output. The output from regular
projects also seems more closely fits the intended purpose of funding. The differences in
project quality are largely explained by observable attributes of the projects and research
teams, suggesting that the NIH may use these attributes as cues for discerning underlying
project quality. In addition, ARRA projects are more likely than regular projects to involve
investigators with past grant experience. Many of these inter-group differences are specific to
R01 grants, the largest funding category in the NIH. Overall, these results suggest that the
NIH’s project selection appears generally in line with its purported mission. In particular,
our findings do not support the frequent criticism that the NIH is risk-averse and favors
experienced investigators.
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1. Introduction

The National Institutes of Health (NIH) as a part of the U.S. Department of Health and

Human Services is the largest public source of funding for biomedical and health-related

research in the world. Few disagree on the institution’s crucial role in improving human

health, economic growth, and job creation. However, the adequacy of project selection in5

the NIH has been more controversial. For example, Azoulay et al. (2011) find that the

scientists supported by the Howard Hughes Medical Institute (HHMI), a U.S. non-profit

private biomedical research organization, produce high-impact articles at a much higher

rate than a control group of similarly accomplished NIH-funded scientists. It has been

argued that the NIH tends to be risk-averse and peer reviews are too conservative, putting10

greater weights on the likelihood of success rather than the potential impact of the projects

(Zerhouni, 2003; Nurse, 2006). These selection criteria thus tend to put young and less

experienced scientists at a disadvantage in securing grants from the NIH (Weinberg, 2006).

They also generate perverse incentives for scientists to strategically submit proposals that

are already close to completion, rather than their most innovative applications (Zerhouni,15

2003; Nurse, 2006; Stephan, 2012). To its credit, the NIH has actively sought to address these

concerns in various ways. For instance, it recently began offering “High-Risk High-Reward

(HRHR)” Funding Opportunity Announcements (FOAs) and has initiated special programs

such as the Director’s Pioneer Awards and New Innovator Awards (Zerhouni, 2003; Austin,

2008). As their titles suggest, these initiatives are specifically designed to promote highly20

innovative yet risky research ideas. Nonetheless, concerns seem to remain unabated.

Given the NIH’s enormous influence on individual scientists’ career as well as on the

national-level innovation in the biomedical field, it is imperative to ensure that the NIH

supports the “right” projects. If the above-mentioned allegations were true, the NIH may

not be doing their job and public resources may be used inefficiently. It is thus important25

to accumulate evidence on the effectiveness of the NIH as a public institution, particularly

given their crucial role in biomedical research. However, despite the frequent criticism on

the NIH’s review criteria and selection process, we know surprisingly little about the NIH’s
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“preference” in its project selection. Because the NIH does not disclose how it actually

selects projects, we simply have little way of confirming or disproving these allegations, let30

alone assessing the institution’s overall effectiveness. Hence, what seems still in order is to

find a way to systematically investigate the nature of projects or scientists that the NIH

chooses to support.

This paper is our attempt to do just that. Specifically, we take a revealed preference

approach (Samuelson, 1938) to deduce the NIH’s preference from the observed funding35

decisions. Our logic behind this approach is as follows. If choices x and y are both eligible

for selection and x is chosen over y, then x is revealed to be deemed at least as good as y.

Thus, by comparing the characteristics associated with choice x relative to those with choice

y, one can infer the decision-maker’s preference. Several challenges arise in applying this

approach to our context because the following conditions have to be satisfied: (i) projects40

x and y are both identified as eligible for funding when x is revealed preferred to y (i.e.,

both projects belong to a feasible set); (ii) y is also funded eventually (so that the research

output from the projects are comparable); and (iii) underlying characteristics of x and y are

independent of the nature of the funding resource for y (i.e., the changes in funding resource

are exogenous to the attributes of the projects). The American Recovery and Reinvestment45

Act (ARRA) in 2009 offers a natural experiment that successfully meets these requirements.

In February 2009, the 111th United States Congress signed on the ARRA that stipulated

outlays of later-revised $831 billion as the economic stimulus package, which is the largest

single economic stimulus program in the U.S. history. $10.4 billion of that package was

allocated to the NIH to be spent within two years from the enactment. Considering the NIH’s50

annual budget of around $25-30 billion, this additional fund was substantial (Steinbrook,

2009). The NIH accordingly disbursed most of the ARRA fund to extramural scientific

research in the form of grants ($8.97 billion to 21,581 projects). In disbursing the ARRA

fund, the NIH used two distinct categories, on top of its regular NIH grants. The first

category is “ARRA Solicited,” under which the NIH selected and funded projects from55

competing applications that were newly submitted in response to the ARRA FOA. Under

the second category, “Not ARRA Solicited,” the NIH selected and funded projects from
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a pool of past applications that “received meritorious priority scores from the initial peer

review process” and “received priority scores that could not otherwise be paid in FY 2008

or 2009.”1 In fact, the NIH explicitly acknowledges that it “extended beyond payline to pick60

them up.”2 In other words, these second-category projects were evaluated as having sufficient

scientific merits but, due to budget constraints, could not be selected for funding initially;

absent the ARRA enactment, these would never have been awarded NIH grants. This second

category of projects forms the core of our study. Under this category, 3,869 projects ($1.41

billion) were awarded NIH grants in FY2009 and 628 projects ($0.32 billion) in FY2010.65

The ARRA thus disturbed the NIH funding mechanism temporarily but substantially.

Given the nature of the event, the ARRA experiment provides several important merits

for our approach. First, the infusion of the ARRA fund was exogenous to the NIH’s agenda

(Chodorow-Reich et al., 2012; Wilson, 2012). Thus, the project selection is unlikely to

have been influenced by some NIH-specific policy initiatives. Second, the ARRA event has70

accidentally revealed the projects that were deemed worthy of support but were not funded

due to budget constraints (for convenience, we label them as “ARRA projects”). This set of

projects thus belonged to the same risk set as the projects that initially cleared the hurdle

and were selected for funding from the same pool of proposals (we label the latter as “regular

projects”). Third, ARRA projects were also funded later by the NIH. Hence, both groups75

of projects are subject to a fair comparison. Lastly, because the NIH requires all funded

projects to acknowledge their funding in all publications resulting from the projects, we can

precisely identify the research output and link it to individual grants.

Exploiting this unusual setting to study the NIH’s preference in project selection, we

examine the following questions: (i) Does the NIH select higher quality projects?; (ii) Does80

the NIH prefer riskier projects?; (iii) What are the cues that the NIH uses to identify fundable

projects?; (iv) How close are the selected projects to the intended purpose of funding?; and

(v) Does the NIH favor experienced investigators? In addressing these questions, we also

look at variations across different types of grants.

1http://grants.nih.gov/grants/guide/notice-files/not-od-09-078.html
2http://report.nih.gov/recovery/NIH_ARRA_Funding.pdf
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We test the first question by examining the differences in research output between the85

two groups, in terms of their impact (measured by the dollar-adjusted number of citations of

journal publications per project) and productivity (measured by the dollar-adjusted number

of journal publications per project). We find that ARRA projects on average produce per-

dollar publications of significantly lower impacts (13.8%) than regular projects and that this

difference is primarily driven by R01 grants, the largest funding category among NIH grants.90

We find no difference in the (dollar-adjusted) number of publications overall, though for R01

the difference (19%) is again considerably in favor of the regular group. Moreover, regular

projects are significantly more likely (by 2.2%p) than ARRA projects to produce articles of

the highest impact, as defined by the probability of belonging to the top 5% of the citation

distribution. This pattern holds across different grant types. In contrast, ARRA projects95

are no more likely than regular projects to “fail,” as defined by producing zero publications.

Overall, regular projects appear to be of higher quality than ARRA projects.

We next explore which group of projects exhibits higher “risk.” In fact, the NIH claims

that it considers risk as an important selection criterion along with impact (Austin, 2008).

Our analysis above indicates that the regular group is more prone than the ARRA group100

to produce right-tail outcomes though the likelihood of left-tail outcomes is similar between

the two groups. We further conduct an inter-group comparison of the variance in research

output in terms of the citation-based impact and the quantity-based productivity. We find

that the distribution of impact (for a given FOA) exhibits a greater dispersion for regular

projects than for ARRA projects and this difference is not specific to a particular grant type.105

No difference in dispersion is found for the number of publications either at the aggregate

level or between grant types. Thus, on the whole, regular projects seem to exhibit greater

variations in research output relative to ARRA projects. Taken together, these findings do

not render support to the criticism that the NIH is too risk-averse (e.g., Zerhouni, 2003).

We confirm these results on a subset of projects that started in the same time period and110

hence are less subject to differences in time window.

The next question concerns potential cues that the NIH might use to determine which

projects are more promising and hence warrant funding among other projects. Obviously,
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we do not have data on the actual criteria or check points that the NIH uses to evaluate each

project. Instead, we employ a set of observable attributes of projects and investigators and115

relate them to research output to see which factor better explains the characteristics of the

output. We find that, among other factors, team size, recent grant money and the institution-

level grant award history positively explain the impact of research output. In contrast, team

size is the only significant correlate of the quantity-based productivity. Interestingly, when

these observable attributes are controlled for, the differences in research output between120

regular projects and ARRA projects almost disappear. This suggests that these project-

and investigator-level attributes help predict the outcomes of the projects reasonably well

and hence the NIH might be using them as useful cues for identifying promising projects.

Each FOA has its own objectives of funding. We thus compare between the groups the

extent to which the project produces an output that is close to that funding purpose. For125

this, we devise a metric (“research fit”) that quantifies the proximity between the objectives

of an FOA and the content of the resulting publications from the project funded under the

FOA. On this metric, the regular group of projects exhibits a significantly greater research

fit than the ARRA group. This implies that, in choosing projects of higher quality and

greater risk, the NIH does not make a trade-off with their fit with the funding objectives.130

Lastly, we examine if experienced investigators, defined as those with a record of past

NIH grants, are favorably treated in receiving NIH grants. We do this by looking at the

probability that the applicant team with at least one principal investigator (PI) who previ-

ously received an NIH grant is awarded an ARRA grant, as opposed to receiving a regular

grant. We find that, controlling for other project attributes, ARRA funding is significantly135

more likely given to experienced PIs. This pattern is particularly observed for R01 grants.

The flip-side of this result is that, in the regular funding cycle, these experienced PIs are

less likely to be selected for funding, all else equal. This result runs counter to the frequent

allegation that the NIH favors PIs with proven records (e.g., Weinberg, 2006). In addition,

the grant history of the PIs’ institutions has no influence on the probability of an ARRA140

award, suggesting that the so-called Matthew effect (Merton, 1968) does not apply to NIH

grants.
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Reflecting the importance of NIH funding to scientific research, the selection process at

the agency has been under academic scrutiny on various aspects such as researcher ethnicity

(Ginther et al., 2011) and expertise (Li, 2012), political influences (Hegde and Mowery, 2008;145

Hegde, 2009), and peer review (Hegde, 2009; Azoulay et al., 2012; Nicholson and Ioannidis,

2012). We add to this literature by documenting the agency’s revealed preference in selecting

projects; our unique research setting provides a natural variation that allows for such an

attempt. In spirit, our work is close to Bisias et al. (2012) who assess the efficiency of the

NIH’s funding allocation across disease categories by applying the modern portfolio theory150

to analyze its risk attitude.

More broadly, we join the recent policy debate on scientific research funding (Bourne

and Lively, 2012; Fineberg, 2013; McDonough, 2013). In doing so, our study complements

the body of literature on the effect of public funding on research output (Carter et al., 1987;

Averch, 1989; Gordin, 1996; Arora and Gambardella, 2005; Jacob and Lefgren, 2011a,b;155

Benavente et al., 2012).3 Our paper, however, is distinct from these studies in that our

primary focus is not on estimating the effect of funding on research output per se. Tan-

gentially, our study is also related to the literature on the policy evaluation of the ARRA

program, which has so far focused almost exclusively on the program’s effect on employment

(Chodorow-Reich et al., 2012; Wilson, 2012).160

2. NIH Grants and the ARRA Program

2.1. NIH Grants

The NIH is the largest single funding source for biomedical research in the world, account-

ing for 28% of the entire U.S. biomedical research (Moses III et al., 2005). An NIH-funded

research led to development of innovative technologies such as the magnetic resonance imag-165

ing (MRI), and 138 NIH-supported researchers won the Nobel Prize in chemistry, economics,

medicine, and physics.4 Such evidence of achievements supports the view that the NIH is

3See Dorsey et al. (2010) and Moses III et al. (2005) for overall trends of scientific research funding,
particularly those of the NIH.

4http://www.nih.gov/about/ accessed on June 26, 2013.
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a critical source of scientific development and economic growth by sponsoring academic

research in health and igniting private sector innovation. For instance, Toole (2012) pro-

vides empirical evidence that NIH-funded basic research helps new drug developments in170

the pharmaceutical industry.

The NIH is a collective body of 27 institutes and centers (ICs) such as the National

Cancer Institute or the Center for Information Technology. Each individual IC is responsible

for administrating and disbursing research funding focusing on a specific health problem

domain. Of the $25-30 billion annual budget, more than 80% is given to outside research175

communities (called “extramural” research grants) such as universities, colleges, and private

research institutes. Besides these extramural grants, the NIH also operates its own research

laboratories and about 10% of the budget goes to supporting these “intramural” research

activities.

The overall process of NIH funding, illustrated in Figure 1, is the following. When the180

need for study in a specific area or domain is identified, one of the ICs issues an FOA.

There are two major types of FOAs: the Request for Applications (RFA) and Program

Announcements (PA). An RFA calls for research proposals in a narrowly defined area of

study, while a PA aims to support projects researching in a broad area. A researcher (or

a team of researchers) applies for grants upon noticing an FOA. All proposals must be185

submitted in response to an FOA. Researcher-initiated proposals are also required to refer

to a specific FOA number. Once proposals are received, the NIH first examines through a

peer review process the scientific merit that each proposal carries. Reviewers, selected to

have no conflict of interest, grade each proposal using a 9-point grading system (in which

1 denotes ‘exceptional’ and 9 ‘poor’). The NIH provides reviewers with detailed guidelines190

for grading proposals. A council meeting then reviews the scores, sets the payline, and

prioritizes projects. Proposals whose scores fall beyond the payline are not funded for the

term. There are three (occasionally four) council meetings per fiscal year; accordingly,

there are three standard due dates for proposals and review cycles. Depending on the

timing within a fiscal year, the payline carries different weights in selecting projects. With195

the final budget unapproved at the beginning of fiscal year, the council sets the payline
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conservatively to prepare for potential high-quality proposals in later cycles of the year.

Most projects are funded and initiated towards the end of fiscal year when the final budget

is determined. When the research output supported by NIH grants is published, the NIH

requires the authors to acknowledge the financial support by citing the grant number to200

their publications. The U.S. Congress mandates the average length of NIH projects to be

four years. Project end date may be extended only with a prior approval of the NIH, even

if the extension request does not ask for additional funding.

Not all proposals deemed to have scientific merits are funded. Although undisclosing

to the public, the NIH internally keeps record of the review scores of the proposals that205

earned meritorious scores (i.e., scores that deserve funding) but fell beyond the payline that

is determined by funding availability. Once a proposal is selected and funded, the applicant

becomes the PI of the project responsible to carry out the proposed research. Multiple

researchers can jointly submit a proposal, in which case all the applicants become PIs with

one of them designated as the contact PI.210

Funded projects are classified by their activity and application type. The activity type,

an alphabet followed by two-digit number or two alphabets followed by a single-digit number,

characterizes the purpose of fund and how it will be spent. Examples include R01, R03,

and P01. R01, the oldest and largest funding mechanism of the NIH, supports normal-size

(∼$500,000) research projects proposed by investigators. R03 provide relatively smaller215

amounts of fund (<$50,000 per year) to preliminary short-term research projects with an

explicit non-renewal term attached. P01, on the other hand, funds the initiation of a program

that addresses a broad area of biomedical study. The application type is another dimension

of classification. Not all projects are proposed as new or short-term. A funded project that

spans more than a year is the norm, not the exception. Thus, every year the PIs of an existing220

project must submit a renewal application to secure continued funding. Renewal applications

may or may not go through a competitive review process, depending on initial terms or

other conditions. In some cases, a project can request additional funding as administrative

supplements. All these different types of applications are labeled accordingly and recorded as

separate projects for that fiscal year. These fine-grained classification systems and detailed225
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labeling information per project allow us to examine differences across grant types and

in some specifications to control for much of the unobserved heterogeneity across types of

funding and research activities.

2.2. ARRA and NIH Funding

In February 2009, the U.S. government earmarked $831 billion for the economic stimulus230

package based on the ARRA enacted by the 111th U.S. Congress. As a result, the US

government raised more than $800 billion and have paid out $290.7 billion for tax benefits,

$254.5 billion for contracts, grants, and loans, and $250.8 billion for entitlements.5 One of

the five main purposes of the ARRA stated in the Act6 is to make “investments needed to

increase economic efficiency by spurring technological advances in science and health.” The235

law also explicitly directs to “commence expenditures and activities as quickly as possible.”

This single largest fund flowed into the U.S. economy through many government agencies

including the NIH as part of the Department of Health and Human Services. Figure 2

describes the ARRA timeline for NIH-related events, some of which stress the urgency of

expending the fund to stimulate the economy.240

The NIH was appropriated to allocate $10.4 billion, of which $8.97 billion was spent

as extramural research grants. Among these, $2.71 billion (30.2%) were awarded through

ARRA-specific funding opportunities such as Challenge Grants and Grand Opportunity

Grants. $1.93 billion (21.5%) were granted to existing projects as administrative supple-

ments and $2.31 billion (25.8%) were awarded to ARRA-funded projects taking more than245

2 years via noncompeting continuation mechanism. A notable awarding mechanism, which

is the focus of our study, that allocated $1.73 billion (19.3%) exclusively targeted the previ-

ously reviewed applications that had been submitted to funding opportunities unrelated to

the ARRA.

The NIH released the notice on April 3, 2009 stating that it would consider funding250

proposals that had previously been reviewed and earned meritorious scores, but had not

5http://www.recovery.gov/ as of May 31, 2013.
6http://www.gpo.gov/fdsys/pkg/PLAW-111publ5/pdf/PLAW-111publ5.pdf.

9

http://www.recovery.gov/
http://www.gpo.gov/fdsys/pkg/PLAW-111publ5/pdf/PLAW-111publ5.pdf.


been funded. All but a few of these proposals had been submitted to an FOA unrelated

to the ARRA. Thus, these researchers had submitted proposals without knowing that the

NIH would soon obtain substantial amount of additional funding which must be expended

“as quickly as possible.” The NIH awarded this fund to the proposals that had received255

meritorious scores from the review but had fallen below the payline in fiscal years of 2008

and 2009. In effect, the NIH temporarily extended beyond the payline to “pick up” projects

that would not have been funded without payline extension, and utilized some of the ARRA

funding to support these projects. This temporary shift, triggered by an exogenous event,

incidentally revealed the proposals around the margin of the payline. Figure 3 illustrates260

how additional funding from the ARRA triggered payline extension and which group of

projects were affected. As detailed in the next section, these additionally selected projects

under the ARRA along with the projects selected under regular funding cycles for the same

FOAs collectively form the subject of our empirical investigation.

3. Data and Sample265

The project-level funding data come directly from the NIH. The NIH makes its research

activities publicly available in line with the open government initiatives to ensure trans-

parency in its operation. It provides a web interface for the public to browse the funded

projects, as well as a bulk download channel for those who want to conduct a more systematic

analysis. The entire project funding data span from 1985 to 2012. Our main dataset focuses270

on the projects funded in fiscal years 2009 and 2010, though we utilize project records in

previous years to construct some of our variables. Each project record contains fiscal year,

project number, administrating IC, activity code, application type, indication of funding

by the ARRA appropriation, associated FOA number, project start and end dates, list of

PIs, affiliation of the contact PI, education institution type, funding mechanism, and award275

amount. The NIH records the name of each PI and assigns a serial number to each PI for

identification. The education institution type is the category of the contact PI’s affiliation

(e.g., School of Medicine or School of Arts and Sciences). The funding mechanism indicates

the general purpose of the fund such as Research Projects, Training, or Construction.
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Not only does the NIH compile and disclose detailed project records, but it also keeps280

track of the list of publications generated from its funded projects and provides a linking

table that contains pairs of the publication identifier and the project number. The detailed

bibliographic information of the publications listed in this linking table comes from the

PubMed database. Each publication record contains authors list, affiliation of the corre-

sponding author, journal title, ISSN, volume, issue, and year of publication. We also use285

forward citations data from Scopus R©. By matching these data with the project-level funding

data, we can identify how many publications result from a particular project and where and

when these articles are published. The citations data allow us to construct a measure of

impact of a research project funded by the NIH.

We collect all NIH projects funded in fiscal years 2009 and 2010. Using application290

type and funding mechanism, we filter down to only research projects initiated from a new

application. We then drop grants for non-U.S. institutions and projects funded by non-NIH

agencies. Because this sample only contains new application-based projects, administrative

supplements to existing projects and continuation funding records are accordingly excluded.

Among ARRA-funded projects, we are left with both ARRA-solicited and non-ARRA-295

solicited projects. The ARRA-solicited projects are the ones that are selected from the

applications associated with ARRA-specific FOAs. We remove these projects using the

corresponding FOA numbers.

The purpose of our analysis is to examine the NIH’s preference in project selection

primarily by comparing between the research output of projects supported by the ARRA300

fund and that of projects supported by regular NIH grants. To that end, we need to

ensure that these two groups of projects are intended to solve the same problem defined

by the FOAs. Hence, among the projects supported by regular NIH grants, we exclude

all projects that do not share an FOA number with one of ARRA-funded projects in the

sample. Our final sample thus contains 12,656 projects (2,790 ARRA projects and 9,866305

regular projects).7 To merge project data with the publication list, we search the link table

7We remove two projects whose project start date is in FY2008, which seem apparent coding errors.

11



with project numbers. A project can have multiple publications. The entire set of matched

publications thus contains 33,793 articles.8

4. Empirical Analysis

4.1. Project Quality310

We first examine if the NIH selects higher quality projects on average. We do this by

comparing the impact and the quantity of research output (i.e., journal publications) between

regular projects and ARRA projects. Given that both groups of projects ultimately received

NIH grants but regular projects have been selected first, any superiority of the regular group

on our quality measures would indicate the NIH’s preference for (or its ability to select)315

higher quality projects.

In addition to investigating this on the aggregate level, we also examine if the pattern

(if any) varies across grant types. Our sample includes 14 activity categories but the top

three categories are R01, R21, and R03 (in a descending order of frequency), which together

account for over 90% of the projects. According to the NIH9, R01 is the classic type of320

research grant awarded to major research projects, R03 is intended to support pilot or

feasibility studies, and R21 is for new and exploratory research that may involve high risk

but may lead to a breakthrough. Both R03 and R21 projects are encouraged to be followed

up by R01 applications. In sum, R01 is a mechanism to support research that may show some

initial results, while R03 and R21 are to seed-fund risky but potentially highly impactful325

research initiatives. Thus, the nature of projects and hence the characteristics of research

output may well vary between R01 and the other two (R03 and R21) grant types.

For the measure of impact, we calculate for each funded project the maximum number

of citations of all journal publications that result from the project (e.g., Benavente et al.,

2012). For the quantity-based productivity measure, we count the number of publications330

from a given project. Because projects vary in the resources expensed for the research, we

8We remove articles published prior to 2009 as they seem obvious errors in the raw data.
9https://www.nichd.nih.gov/grants-funding/opportunities-mechanisms/mechanisms-types/

comparison-mechanisms/Pages/default.aspx.
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also compute the normalized measures of impact and quantity by dividing the raw measures

by the total cost of project (in million U.S. dollars). To distinguish between the groups, we

define a dummy, ARRA, that equals one if a given project is funded under the ARRA and

zero if it is supported through regular NIH grants. Table 1 provides the summary statistics335

of these variables, along with those of all other variables used in our study.

For this part of analysis, we regress the measures of project quality on the ARRA dummy,

with FOA-level fixed effects included to minimally control for variations across funding

decision units at the NIH.10 Hence, our regression takes the following form:

yij = α + β · ARRAi + ϑj + εij (1)

where yij is our measure of project i’s quality, ARRAi indicates the ARRA status of project

i, ϑj is a dummy for FOA j that project i belongs to, and εij is an idiosyncratic error term.

To examine the differences between grant types, we interact the ARRA dummy with R01i,

which equals one if project i is supported by an R01 grant and zero otherwise.340

Table 2 reports the results. Column 1 shows that the projects funded under the ARRA

on average generate publications of 9.9% fewer citations per project, as compared to the

projects supported by regular grants. When normalized by project cost, the gap in citations

increases to 13.8% (column 3). The inter-group difference in the number of publications

(columns 5 and 7) is somewhat weaker but still sizable (about 9% fewer publications per345

project-dollar for ARRA projects). These results imply that regular-funded projects are

not only more productive than ARRA-funded projects but the research output from regular

projects also commands significantly higher impacts, compared to that of ARRA projects.

Insofar as our measures represent the inherent quality of projects, our results suggest that

the NIH has a reasonable capacity to sort and prioritize grant proposals based on the quality350

of the projects.

10By this, we are essentially comparing the raw values of quality measures between the two groups. This is
because, given our purpose of examining if the projects funded under the ARRA are fundamentally different
from those funded through regular grants, controlling for other observable attributes masks such differences
in underlying quality of projects.
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A breakdown analysis by grant type indicates that the differences in research impact

between the groups, particularly in terms of per-dollar citations, come primarily from the

R01 type grant (columns 2 and 4). R01 also seems largely responsible for the difference in

the quantity of research output (columns 6 and 8). As indicated by the coefficients on the355

R01 dummy, projects supported through R01 grants on average generate more and higher-

impact research output than those supported through other types of grant. Extending the

logic above, the differences between grant types imply that the NIH is relatively good at

identifying “better” projects in the R01 category, but may be less so in other categories that

involve more exploratory research proposals on nascent opportunities.11
360

4.2. Project Risk

The analysis in the previous section shows that regular projects are on average of higher

quality than ARRA projects, suggesting that the NIH gives a priority to higher-quality

proposals. As mentioned earlier, the NIH is also interested in promoting high-risk projects,

in the hope that such projects will produce major breakthroughs even if that also means365

higher chances of failure. We thus examine in this section the NIH’s risk preference in

project selection. We do this in two ways: first, by comparing between the two groups of

projects the likelihood of tail outcomes (i.e., extreme successes and complete failures) and

second, by contrasting the variances in our measures of quality of research output.

For the first part of analysis, we construct for each project two binary indicators of370

tail outcomes: the Top 5% dummy, which indicates if the project’s maximum number of

citations (adjusted by the number of months since publication) makes into top 5% of all

publications in our sample12; and the No publication dummy, which indicates if the project

11There may be two reasons for this. One is that exploratory research proposals are inherently more
difficult to evaluate their potential even though the NIH attempts to carefully prioritize projects based on
the assessed quality. The other is that in these exploratory grant categories, the NIH purposefully selects
projects that are not guaranteed to succeed, rather than based on quality assessment. We are unable to
discern which of the two is more likely.

12We would ideally want to construct this measure based on the entire publication pool of articles in
biomedical research. However, defining the boundary of biomedical research is challenging and thus collecting
all publications in the field is practically infeasible. Instead, we use as the base all publications produced
from the projects in our sample. This in fact makes our definition of top 5% quite stringent because the
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produces zero publication. Hence, the former represents a right-tail outcome (i.e., extreme

success) and the latter a left-tail outcome (i.e., complete failure).375

We estimate an analog of Equation (1), with the dependent variable now being one of the

two dummies of tail outcomes. Table 3 presents the results. On average, ARRA projects are

significantly less (by 2.2%p) likely to produce a highly impactful publication than regular

projects (column 1). In contrast, no inter-group difference is found for the likelihood of

zero publication (column 3). Thus, regular projects as a group exhibit a greater tendency to380

generate tail outcomes, particularly those on the right tail of the distribution. By grant type,

the R01-supported projects in general are considerably more prone to generate a top-5%-class

research output and are much less likely to fail, relative to projects supported through other

types of grants. However, these distinctions hold equally for regular projects and ARRA

projects, as indicated by the insignificant coefficients on the interaction terms (columns 2385

and 4). Taken together, across all grant types, regular projects appear to command a higher

risk of producing tail outcomes than ARRA projects.

We further investigate the risk profile of selected projects by looking at the degree of vari-

ations in research output between the two groups. We measure variations by the statistical

variance of our measures of project quality (i.e., citation-based impact and quantity-based390

productivity). For this part of analysis, we collapse the data to the FOA level and compute

the variances of output measures for each FOA by the ARRA status.13 Hence, for each

FOA and for each measure of quality, we obtain two values of variance, one for the regular

project group and the other for the ARRA group. We then estimate an analog of Equation

(1), with the dependent variable being one of our measures of quality as in Table 2.395

Columns 1 and 3 of Table 4 show that, for the same FOA, the projects supported through

projects in our sample are already among a highly selective group of projects that secured funding from the
NIH through a rigorous scientific review process. Therefore, the top 5% in our sample could well indicate
an even higher rank in the percentile distribution based on a (hypothetical) pool of full publications.

13Note that variances can be calculated only when there are multiple observations. Because a majority of
projects in our sample has either zero or a single publication, project-level variances are almost meaningless.
Further, since each FOA is designed to address a certain area of problems (in the case of PA) or a specific
problem (in the case of RFA), all projects under the same FOA are in principle to provide a solution to the
same set of problems. Thus, defining the variance at the FOA level helps reduce idiosyncratic variations
across projects.
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regular grants exhibit a significantly greater (by 18-25%) variance in citation-based research

impact than the projects selected under the ARRA. The inter-group difference in the quan-

tity of research output also indicates the same direction, but is not statistically significant.

No difference seems to exist in the pattern across grant types, even for the research impact400

(columns 2 and 4). On the whole, across all types of grant, regular NIH projects are con-

siderably less predictable than ARRA projects in the quality of research output (at least on

the aspect of research impact). Therefore, to the extent that the propensities of tail out-

comes and the variances of research output represent the relative “risk” of the projects, we

can interpret this section’s results as suggesting that the NIH gives a priority to higher-risk405

proposals.

4.3. Robustness Checks on a Cohort Sample

Our analysis in the previous sections uses the full sample of projects. However, due

to differences in the timing of cost disbursement, the projects in our sample have different

time windows for producing research output. In particular, for the institutional reasons410

explained in Section 2, even for the same fiscal year ARRA projects systematically started

later than non-ARRA projects (Figure 4). This difference in time window could affect our

measurement of project output, particularly the quantity side of it. Thus, as a robustness

check, we restricted the sample to the projects that started in the same time period (May

1-Sep. 30, 2009) and repeated the same analyses as we did on the full sample.415

On project quality, presented in Table 5(a), we find results that are qualitatively similar

to those obtained from the full sample analysis (Table 2). In fact, the differences between

the groups become starker on this cohort sample. Compared to ARRA projects, regular NIH

projects on average generate research output with significantly higher (14-19%) impacts and

result in a greater (8-13%) number of publications per project. Notably, the significance420

level of the difference in the output volume has increased, underscoring the importance of

harmonizing the project time between the two groups. There is even stronger evidence that

these differences in project quality are largely specific to the R01 category.

We also find similar patterns on project risk (Table 5(b)): regular NIH projects exhibit
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greater variances in research output than ARRA projects, at least in terms of citation-based425

impact. The overall differences between the two groups are statistically weaker, though

the economic significances remain generally comparable to those in Table 4. Once again,

we find no inter-group difference across grant types, as the coefficients on the interaction

terms stay insignificant throughout. We suspect that the overall weakening of the statistical

significance on this cohort sample may be due to a considerable reduction in the sample size430

(by about 28%). Nonetheless, the previous sections’ results on project quality and risk seem

generally robust to differential timing of project start.

4.4. Correlates of Project Quality

In this section we investigate the factors that help explain the differences in research

output between regular projects and ARRA projects. This will allow us to speculate on

the potential cues that the NIH might be using to identify and select promising proposals.

Specifically, we re-estimate Tables 2 and 3 with a full set of controls for available observ-

able attributes of the project and the investigator(s). The regression model thus takes the

following form:

yi = α + β · ARRAi + xiγ + εi (2)

where yi is one of our measures of project i’s output characteristics; ARRAi is a dummy

indicating the ARRA status of project i; xi is a vector of observable attributes of project435

i including (log) grant size (in U.S. dollar), (log) number of unique authors, a dummy

indicating whether project i ends within two years, a dummy indicating whether project

i is funded in FY2010, the number of PIs associated with project i, a dummy indicating

whether any of the PIs has an experience of any NIH grant in the past, (log) mean grant

amount that the PIs have received in the preceding five years, a dummy indicating no440

grant in the preceding five years, the number of grants awarded to the organization in the

preceding five years, the number of months since publication, and the activity-FOA-IC-

education institution type-fiscal year dummies; and εi is an idiosyncratic error term. The
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number of unique authors, identified from reported publications, captures the size of lab

that the PI(s) operate. To identify a PI’s experience in NIH grants, we search the entire445

grant data between 1985 and 2008 (or 2009). If any of the PIs of projects funded in FY 2009

(or 2010) appears in project records between 1985 and 2008 (or 2009), then we mark the

project as including an experienced PI. The amount of NIH grants of PIs in the preceding five

years (2004-2008) measures the PIs’ recent funding track record. For projects with multiple

PIs, we take the mean of all PIs’ recent grant amounts. Since this variable is left-censored450

at zero, we include an indicator of whether the value is zero (i.e., no grant in 2004-2008).

The number of grants that the contact PI’s institution received in the preceding five years

(2004-2008) represents the institution-level quality. The time since publication controls for

differences in citation window. Lastly, the joint fixed effects between activity type (R01, R03,

etc.), FOA number (RFA or PA’s serial number), IC code (National Institute of Allergy and455

Infectious Disease, National Cancer Institute, etc.), education institution type (School of

Medicine, School of Arts and Sciences, etc.), and fiscal year of application help control for

other potential unobserved heterogeneity across grants.

Table 6 reports the results from this analysis. Among the explanatory variables, team

size, measured by the number of unique authors, is estimated to be the strongest corre-460

late of project outcomes: projects with a greater team size on average generate more and

higher-impact publications (columns 1 and 2), are more likely to produce the highest-impact

research (column 3), and are less likely to fail (column 4). In contrast, project cost, once

team size is controlled for, performs poorly in explaining research output, and in fact is

negatively related to quantity-based output measures (columns 2 and 4). Not surprisingly,465

having more research resources secured by the investigators recently (conditioning on having

received some grants) helps produce significantly more impactful research output (column

1), though it does not increase the likelihood of highest-impact output (column 3). It also

has no influence on the quantity of publication (column 2) or the likelihood of project failure

(column 4). The institution-level quality is a positive and significant correlate of research470

impact (in terms of both the number of citations and the likelihood of receiving top 5%

citation). Interestingly, when none of the PIs associated with the project has a recent grant
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record, the project tends to produce more impactful research output (column 1). This im-

plies that, all else equal, new PIs might perform well in generating impactful research, if not

more publications. Among other variables, projects with a shorter time window produce475

fewer publications (columns 2 and 4), while the impact of their output is generally compara-

ble to that of longer-term projects. Projects with earlier publications elicit more citations,

validating the importance of controlling for the citation window (column 1).

Notice that when these project- and investigator-level attributes are accounted for, the

coefficient on the ARRA dummy largely loses significance (that for the top 5% indicator480

stays significant but only marginally). In other words, once we account for the observ-

able attributes of the project, regular NIH projects appear qualitatively similar to ARRA

projects. This result implies that these project-level attributes are collectively highly cor-

related with the underlying quality of projects. Hence, they may indeed be useful cues for

the NIH in identifying and selecting promising projects among numerous grant proposals.485

Pushing this a bit further, one can interpret this result as suggesting that the NIH may have

limited additional insight beyond these observables in distinguishing good projects from less

promising ones.

4.5. Research Fit

Each funding opportunity of the NIH is an attempt to address a specific research problem.490

We thus explore how closely the selected projects fit the intended purpose of the funding.

This question is particularly relevant because selections of high-impact, high-risk projects

may be pursued at the expense of the original funding purposes. If such were the case,

superiority of projects simply based on our measures of research output may not necessarily

indicate a quality work of project selection on the part of the NIH. To examine this question,495

we measure the closeness of projects to the purpose of a given FOA (“research fit”) and

compare it between regular projects and ARRA projects. If the NIH did not trade it off

with project quality in selecting projects, we should observe a similar difference in research

fit between the two groups as found in the previous analyses.

We construct a measure of research fit by textually comparing the FOA research ob-500
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jectives and the abstracts of publications from the corresponding projects. For the textual

analysis, we use the term frequency-inverse document frequency method (Manning et al.,

2008; Bird et al., 2009; Rehurek and Sojka, 2010). Note that this measure is defined ex post

because we use “publication” abstracts instead of grant proposal abstracts. A publication

abstract is by definition written after the project is funded, and hence the investigators have505

much less incentive to intentionally make it close to the FOA’s stated objectives. Thus, us-

ing publication abstracts, rather than proposal abstracts, to capture the content of projects

better serves our purpose. We provide in the Appendix the detailed process of construct-

ing this variable. With this measure as the dependent variable, we estimate an analog of

Equation (1).510

As shown in Table 7, ARRA projects on average exhibit a significantly lesser fit with

the FOA research objectives (column 1). This implies that regular NIH projects as a group

produce research output that is more closely aligned with the purpose of funding than the

output from ARRA projects. There is no difference in the pattern between grant types,

as the coefficient on the interaction term is insignificant (column 2). Therefore, across all515

grant types, the NIH’s selection of high-quality high-risk projects, as evidenced in previous

sections, seems achieved within the range of closely meeting the objectives of the funding.

4.6. Preference for Experienced PIs

A final piece of our analysis concerns if the NIH favors experienced investigators in select-

ing projects. In fact, this is one of the frequent allegations used for questioning the NIH’s ef-520

fectiveness in allocating resources (e.g., Weinberg, 2006). If true, this unwarranted favoritism

would indeed stifle young scientists, potentially miss opportunities of great promises, and

ultimately lead to an overall decline of the biomedical field. Even our results in the previous

sections suggest that a favorable treatment for experienced PIs would not be justifiable be-

cause the projects led by experienced PIs do not result in superior research outcomes (Table525

6). Given the importance of the question, a systematic investigation of this aspect seems in

order. Our approach to that question is to examine the probability that the applicant team

involving any PI who has a history of past NIH grants is awarded an ARRA grant, relative
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to that of receiving a regular grant.

We estimate a project-level regression model of the following form:

yi = α + ziγ + εi (3)

where yi is a dummy indicator of project i’s ARRA grant status (i.e., one if ARRA-funded530

and zero otherwise); and zi is a vector of explanatory variables including a dummy indicating

whether any of the PIs has an experience of any NIH grant in the past (“Existing PI”), the

number of grants awarded to the organization in the preceding five years, the number of

unique authors, research fit, and the activity-FOA-IC-education institution type-fiscal year

dummies. The baseline represents a regular NIH grant, hence a negative coefficient on the535

Existing PI dummy would suggest a greater chance of grant award for experienced PIs in

the regular funding cycle.

Table 8 presents the results. Most notably, the coefficient on the Existing PI dummy is

significantly positive (column 1). Projects involving at least one experienced PI are 4.5%p

more likely given an ARRA grant than a regular grant, controlling for other factors. The540

flip-side of this result is that in the regular funding cycle, these experienced PIs are less likely

to be selected for funding. This is in stark contrast to the frequent allegation that the NIH

gives a favor to PIs with proven track records.14 Moreover, the institutional “reputation,”

represented by the institution-level grant record in the preceding five years, seems to have

no influence on the probability of an ARRA grant. Thus, at least in our data, we find no545

evidence of the Matthew effect (Merton, 1968) that is often found in other settings (e.g.,

Bhattacharjee, 2012).

Looking at other variables, ARRA projects on average have fewer unique authors but

have greater project costs than regular projects. This suggests that the NIH may have

given a priority to projects that are smaller but could expend more money in research. It is550

intriguing that ARRA projects are smaller in team size than regular projects. Considering

14In fact, our result is consistent with the NIH’s own data: the investigators who received the top 20% of
funding in 2009 had an average of only 2.2 grants each (Rockey, 2013).
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that the ARRA was primarily aimed at boosting employment, granting larger amount of

money to smaller-size teams might have helped achieve the original purpose of the ARRA.

Recall that, in our previous analysis, team size was a strong indicator of the quality of

research output, whereas grant size was not. This interpretation is thus consistent with the555

results in Table 2 that, without accounting for project-level attributes, ARRA projects are

on average associated with lower quality research output.

A split-sample analysis by grant types (columns 2 and 3) indicates that these results are

entirely driven by R01 grants (the regression model for the R03 and R21 sample is not even

properly specified).560

5. Discussion

How does the NIH select projects? Our analysis exploiting a natural experiment setting

from the ARRA suggests that in the regular funding cycle, the NIH tends to opt for a

high-risk, high-return portfolio with greater likelihoods of breakthrough research outcomes.

The selected projects also seem aligned well with the funding objectives. Some project- and565

investigator-level attributes effectively explain the characteristics of research output from the

funded projects, suggesting that these may be useful cues for the NIH to identify high quality

proposals. We find no evidence that the grant history of investigators or their affiliated

institutions provides an advantage in regular grants awards. There is some heterogeneity

across grant types, though R01 is generally the one driving most of the observed patterns.570

A natural interpretation of our results is that the NIH may be doing a reasonable job in

selecting and funding promising yet uncertain projects. In particular, our findings counter to

the frequent allegations that the NIH is risk-averse, preferring surer bets, and gives dispro-

portionately more favors to experienced investigators. Overall, the NIH’s selection scheme

seems to follow an efficiency trajectory as with the sudden increase in funding resource,575

they went after lower-risk, lower-return projects (relative to those selected in the regular

funding cycle). This in turn implies that more funding resources to the institution may

not necessarily lead to the support of higher-risk higher-return projects. We however no-

tice some inconsistency in the selection principle between grant types. For instance, there
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is no difference in the risk-return profile between regular grants and ARRA grants in the580

category of R03 and R21, both of which are designed to promote less proven scientists and

projects. If the NIH were faithful to the stated goal, we should observe greater inter-group

differences for these grant types than for R01. Nonetheless, given that R01 is the largest

funding category at the NIH and is the major source of funding for scientists, our findings

appear quite representative and hence help form direct policy implications for the practice.585

Our approach in this study is to deduce the NIH’s preference from their revealed choices

in project selection between two rounds of selection from the same pool of grant proposals.

In particular, we take the projects selected under the ARRA as the comparison group to

characterize the underlying preference in the regular funding cycle. One might argue that,

given the special (and unprecedented) circumstances that provoked the ARRA enactment,590

the projects selected under that initiative are not appropriate for a comparison group to

deduce the NIH’s behavior under “normal” circumstances. While this is a legitimate concern,

we do not believe our choice of this comparison group to compromise our findings. First of

all, the fairly low success rates for new proposals during the period (17.3% in 2009-2010)

imply that there must have been many projects with sufficient scientific merits. Thus, the595

differences in project quality we document are unlikely to be orthogonal to the differences

in the underlying distribution of quality, unless the NIH intentionally chose lower quality

projects under the ARRA; we have no reason to think they would have done so. In terms

of project risk, though we see a drop in variance for the ARRA group, there is no reason

to expect that the NIH’s goal of expeditiously disbursing the money should necessarily lead600

to a selection of less risky projects (i.e., projects whose expected output is more “centered”

than those supported under regular funding). If the policy goal was the main consideration

in project selection under the ARRA, the NIH may have given priority to the expendability

and employability of the project, as in fact implied by one of our results (ARRA projects had

fewer team members; perhaps the NIH thought that these teams had greater room for hiring605

people). Regardless, that need not be correlated with lower risk. A similar argument can

be made for research fit: the ARRA’s immediate policy goal need not have forced the NIH

to forgo the original funding objectives in selecting projects. The case of the experienced
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PI analysis is less clear. One may interpret the positive coefficient of the ARRA dummy

(Table 8) to indicate that the NIH has given even more favor to experienced PIs in selecting610

projects under the ARRA, over and above what they normally give to them. While we

cannot entirely rule out this possibility, we also wonder why the NIH would have behaved

that way when they certainly knew that the temporary increase in money would soon go

away. What better opportunity than this will there be for the NIH to make up for their

adverse reputation by purposefully selecting more young and new scientists with the ARRA615

money? We therefore believe that ARRA projects serve as a reasonable basis for comparison

and hence our findings are unlikely to suffer from any idiosyncrasy of the event.

Another potential issue with our analysis is that our sample is conditional on the project

being selected. That is, we do not observe the full set of projects at risk of being selected.

Given the highly competitive nature of NIH grants, there must be many projects that620

cleared the (more objective) threshold of scientific merits but were still not selected under

the ARRA. Also, many promising but riskier proposals might not have made the cut in

scientific merits. Thus, the profile of projects in our sample may not be representative of the

underlying distribution of projects. For instance, it is possible that our sample represents

the lower-risk group among the population of projects. Then, our finding of the NIH’s625

preference for high-quality high-risk projects might lose some significance. However, we do

not claim that the NIH unconditionally favors high-quality high-risk projects. Insofar as the

peer review process, which is beyond the scope of our study, is performed objectively and

that the NIH maintains their consistency in prioritizing the risk-return portfolio among the

eligible proposals, our findings reasonably reflect the NIH’s preference in project selection.630

One might also argue that our analysis based on inter-group mean comparison is un-

fair to the ARRA group, as at least some of the projects in the regular group should be

unambiguously superior ones. Thus, including these exceptional projects in calculating the

means can give a natural advantage to the regular group. We do not disagree. In fact, a

more interesting and relevant analysis would be to compare between the projects around the635

cutoff (prior to the ARRA), i.e., projects that are marginally funded in the regular fund-

ing cycle and those that are marginally unfunded then but funded later under the ARRA.
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Unfortunately, our data do not allow for this approach. Nonetheless, even in this group-

based comparison, employing a full set of observable attributes almost entirely eliminates

the inter-group differences (see Table 6). Hence, while we acknowledge this as a limitation,640

we believe that our findings still claim considerable validity.

On a related point, lack of data renders our analysis necessarily crude. Absent data

limitations, we would directly use the scores given to each project in the selection process.

This would make our analysis much more precise. We are convinced that the question we are

addressing in this paper is an extremely important one. Surprisingly, however, this crucial645

issue has eluded scholars in the field, even those who seem to have access to the full data of

NIH proposals and review scores (both funded and unfunded ones) (e.g., Li, 2012). We thus

make our best attempt to examine this issue by exploiting what is currently available to us.

The findings we report in this study suggest that such an attempt is a worthwhile exercise.

A few caveats to our study seem also in order. First of all, the receipt of a particular grant650

may have a limited impact on the research productivity of the grant awardees. Prior studies

have shown that the productivity of funded applicants near the selection cutoff is often fairly

similar to that of unfunded applicants near the cutoff (Carter et al., 1987; Jacob and Lefgren,

2011b). It may be that, given the competitive nature of NIH funding, even researchers who

fail to receive an NIH grant can easily find another source of funding to pursue their research655

(Jacob and Lefgren, 2011b). If so, the research output we observe from funded projects may

be only partially influenced by NIH grants. This would limit our inference based on all

observed output from the projects. Moreover, in the analysis, we use “realized” outcomes

to infer the underlying characteristics of the projects. This approach admittedly ignores the

uncertainty and possible idiosyncrasies in the process of scientific research. Some projects660

may have produced results that far exceeded their initial expectations. Some high quality

projects may have failed to realize their full potential because of unexpected disturbances in

the process. Thus, it would be naive to regard research output as a precise reflection of the

underlying quality of the projects. Nonetheless, to the extent that these idiosyncrasies and

uncertainty associated with scientific research equally apply to both groups of projects, our665

results should reasonably demonstrate the inter-group differences in the underlying project
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quality. Lastly, our sample covers only very recent years (2009-2010). Considering the NIH’s

aggressive push toward high-risk high-return projects reflects fairly recent policy initiatives,

our findings from these recent data may not apply equally to the years preceding our sample

period. While this may suggest that the NIH’s recent initiatives might have been working,670

it may also limit the generalization of our findings to a broader time span during which the

frequent criticisms on the effectiveness of the NIH’s selection process have been formed.

6. Conclusion

Important matters tend to elicit greater attention. The NIH’s central role in promoting

scientific research in the biomedical field has drawn corresponding interests in the process675

by which the institution selects projects and the effectiveness of the selection mechanism.

Selection, by definition, means exclusion for at least some. Complaints can thus arise ac-

cordingly. The decade-long stagnation in funding resources at the NIH may have added to

such tendency. With the recent effectuation of the U.S. budget sequestration, which called

for a spending cut of over $85 billion in the fiscal year of 2013 only, the discordant voices680

may well be amplified. Allegations abound, but the findings from our study do not render

support to such claims. Perhaps the NIH will want to be more transparent in selection

criteria and communicate them more clearly to the interested audience. Without a doubt,

a richer analysis supported by more fine-grained data will help bring additional insight into

this essential process. Some limitations to our study notwithstanding, however, we hope to685

be able to claim a modest contribution to the policy discussion of this important institutional

arrangement.
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Tables

Table 1: Summary Statistics

Regular Projects ARRA Projects

N Mean Std. Dev. Min Max N Mean Std. Dev. Min Max

# of citations 6,818 24.64 39.93 0 649 1,766 19.93 37.71 0 988

# of citations per $M 6,818 963.23 72,663.93 0 6,000,000 1,766 90.17 449.31 0 17,326.98

(Dummy) Top 5% 6,818 0.07 0.25 0 1 1,766 0.04 0.19 0 1

# of publications 9,866 2.79 4.10 0 63 2,790 2.12 3.18 0 36

# of publications per $M 9,866 111.00 10,067.62 0 1,000,000 2,790 9.24 34.23 0 1,509.43

(Dummy) No Publication 9,866 0.31 0.46 0 1 2,790 0.37 0.48 0 1

Research fit 6,740 3.06 6.15 0 82.71 1,754 3.42 5.83 0 50.38

(Dummy) R01 9,866 0.62 0.49 0 1 2,790 0.37 0.48 0 1

(Dummy) R03 or R21 9,866 0.30 0.46 0 1 2,790 0.52 0.50 0 1

Total cost 9,866 364,400.44 308,496.22 1 5,934,572 2,790 325,756.23 294,923.37 1 5,566,450

# of unique authors 9,866 12.35 24.39 0 1,022 2,790 9.23 16.79 0 318

(Dummy) Within 2 years 9,866 0.35 0.48 0 1 2,790 0.97 0.18 0 1

Fiscal year 9,866 2,009.50 0.50 2009 2010 2,790 2,009.07 0.25 2009 2010

# of PIs 9,866 1.11 0.36 1 6 2,790 1.09 0.33 1 6

(Dummy) Existing PI 9,866 0.75 0.43 0 1 2,790 0.76 0.43 0 1

Mean cumulative $ grants for
PIs (2004-2008)

9,866 202,173.73 237,561.81 0 3,502,544 2,790 217,905.72 261,220.79 0 4,620,253

(Dummy) No PI has a grant
(2004-2008)

9,866 0.31 0.46 0 1 2,790 0.30 0.46 0 1

# of grants for organization
(2004-2008, thousands)

9,866 1.75 1.84 0 6.76 2,790 1.67 1.79 0 6.76

# of months since published 6,818 30.08 9.44 11 56 1,766 30.77 9.23 12 55
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Table 2: Analysis of Project Quality

1 2 3 4 5 6 7 8

(Log) Citation
(Log) Citation

per $M
(Log) Npub

(Log) Npub per
$M

(Dummy) ARRA -0.099** -0.052 -0.138** -0.005 -0.047† -0.002 -0.090† 0.033
(0.027) (0.040) (0.052) (0.065) (0.027) (0.015) (0.049) (0.028)

(Dummy) R01 0.379** 0.540** 0.382** 0.512**
(0.044) (0.053) (0.017) (0.040)

ARRA × R01 -0.062 -0.211** -0.058** -0.193**
(0.044) (0.068) (0.019) (0.039)

Constant 2.504** 2.252** 3.497** 3.136** 1.369** 1.115** 2.333** 1.990**
(0.006) (0.031) (0.011) (0.039) (0.006) (0.011) (0.010) (0.027)

N 8,499 8,499 8,499 8,499 8,499 8,499 8,499 8,499
F -stat 13.41 42.42 6.96 72.68 2.91 189.82 3.37 92.61
Adj. R2 0.06 0.06 0.04 0.04 0.06 0.07 0.12 0.13

Note: FOA-fixed effects are included in all models. Robust standard errors, clustered by FOA, are in parentheses.
†, ** denotes statistical significance at 10%, and 1%, respectively. All models are conditioned on the project having
at least one publication.
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Table 3: Analysis of Tail Outcomes: Top 5% Probability and No Publication Probability

1 2 3 4
(Dummy) Top 5% (Dummy) No Publication

(Dummy) ARRA -0.022** -0.025** 0.027 0.010
(0.005) (0.007) (0.018) (0.020)

(Dummy) R01 0.030** -0.343**
(0.009) (0.017)

ARRA × R01 0.008 -0.005
(0.009) (0.021)

Constant 0.062** 0.043** 0.317** 0.516**
(0.001) (0.006) (0.004) (0.011)

N 8,499 8,499 12,558 12,558
F -stat 22.33 13.12 2.32 200.96
Adj. R2 0.02 0.02 0.09 0.11

Note: FOA-fixed effects are included in all models. Robust standard errors, clustered by FOA, are
in parentheses. ** denotes statistical significance at 1%.
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Table 4: Analysis of Variance in Project Quality (FOA-Level)

1 2 3 4 5 6 7 8

(Log) Citation
(Log) Citation

per $M
(Log) Npub

(Log) Npub per
$M

(Dummy) ARRA -0.183* -0.197* -0.252* -0.264* -0.018 -0.021 -0.052 -0.058
(0.075) (0.092) (0.108) (0.131) (0.036) (0.044) (0.058) (0.072)

(Dummy) R01 -0.210 -0.326 -0.035 -0.069
(0.238) (0.341) (0.116) (0.189)

ARRA × R01 0.019 -0.002 0.010 0.019
(0.181) (0.259) (0.085) (0.138)

Constant 1.193** 1.272** 1.553** 1.675** 0.648** 0.660** 1.103** 1.126**
(0.039) (0.097) (0.056) (0.139) (0.021) (0.045) (0.034) (0.073)

N 271 271 271 271 376 376 376 376
F -stat 5.97 2.23 5.48 2.15 0.24 0.11 0.80 0.31
Adj. R2 0.24 0.23 0.27 0.26 0.21 0.20 0.26 0.25

Note: FOA-fixed effects are included in all models. Standard errors are in parentheses. *, ** denotes statistical
significance at 5%, and 1%, respectively.
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Table 5: Robustness Checks: Analysis on Cohort Sample

(a) Mean Values

1 2 3 4 5 6 7 8

(Log) Citation
(Log) Citation per

$M
(Log) Npub (Log) Npub per $M

(Dummy) ARRA -0.144** -0.023 -0.188* 0.038 -0.083* -0.025 -0.132* -0.001
(0.051) (0.053) (0.087) (0.076) (0.032) (0.020) (0.053) (0.033)

(Dummy) R01 0.211** 0.334** 0.392** 0.517**
(0.062) (0.091) (0.021) (0.061)

ARRA × R01 -0.197** -0.371** -0.088** -0.208**
(0.056) (0.080) (0.026) (0.043)

Constant 2.573** 2.437** 3.600** 3.380** 1.408** 1.169** 2.407** 2.088**
(0.022) (0.043) (0.038) (0.063) (0.014) (0.013) (0.023) (0.038)

N 3,912 3,912 3,912 3,912 3,912 3,912 3,912 3,912
F -stat 8.02 51.82 4.66 66.52 6.72 279.89 6.21 44.02
Adj. R2 0.08 0.08 0.06 0.06 0.08 0.09 0.18 0.19

(b) Variances

1 2 3 4 5 6 7 8

(Log) Citation
(Log) Citation per

$M
(Log) Npub (Log) Npub per $M

(Dummy) ARRA -0.179† -0.237† -0.245† -0.296 0.038 -0.027 0.067 0.001
(0.104) (0.130) (0.142) (0.180) (0.049) (0.061) (0.077) (0.098)

(Dummy) R01 0.778 0.796 -0.287 -0.504
(0.558) (0.774) (0.204) (0.326)

ARRA × R01 0.256 0.234 0.169 0.166
(0.219) (0.304) (0.103) (0.164)

Constant 1.196** 0.889** 1.532** 1.218** 0.613** 0.723** 1.002** 1.193**
(0.063) (0.229) (0.086) (0.318) (0.031) (0.082) (0.049) (0.132)

N 193 193 193 193 280 280 280 280
F -stat 2.93 2.29 2.98 1.63 0.61 1.47 0.76 1.20
Adj. R2 0.12 0.15 0.20 0.20 0.27 0.28 0.36 0.36

Note: FOA-fixed effects are included in all models. Robust standard errors, clustered by FOA, are in parentheses.
†, *, ** denotes statistical significance at 10%, 5%, and 1%, respectively. All models are conditioned on the project
having at least one publication.
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Table 6: Correlates of Project Characteristics

1 2 3 4
(Log) Max
Citation

Max IF (Log) Npub No Pub

(Dummy) ARRA 0.011 -0.466 -0.008 -0.012
(0.058) (0.347) (0.021) (0.010)

(Log) Total cost -0.054 0.090 -0.046† 0.016*
(0.043) (0.324) (0.026) (0.008)

(Log) # of unique authors 0.687** 4.205** 0.562** -0.296**
(0.020) (0.242) (0.011) (0.007)

(Dummy) Within 2 years -0.081 0.082 -0.050† -0.019†
(0.060) (0.451) (0.026) (0.011)

# of PIs -0.042 -0.196 -0.014 0.018*
(0.054) (0.310) (0.019) (0.008)

(Dummy) Existing PI -0.074 -0.447 -0.028 -0.011
(0.048) (0.380) (0.023) (0.010)

(Log) Mean cumulative $ grants 0.076** 0.780** -0.003 0.007
for PIs (04-08) (0.029) (0.241) (0.010) (0.005)

(Dummy) No PI 0.910** 9.256** -0.104 0.086
has a grant (04-08) (0.348) (2.944) (0.123) (0.062)

# grants for organization 0.022** 0.280** -0.001 0.001
(04-08, thousands) (0.008) (0.066) (0.003) (0.002)

# of months since published 0.041**
(0.002)

Constant -0.622 -11.859* 0.655* 0.528**
(0.576) (5.084) (0.330) (0.114)

N 8,499 8,499 8,499 12,558
F -stat 252.59 44.29 337.56 256.85
Adj. R2 0.42 0.22 0.62 0.76

Note: Activity-FOA-IC-institution type-year fixed effects are included in all models. Robust stan-
dard errors, clustered by activity-FOA-IC-institution type-year, are in parentheses. †, *, ** denotes
statistical significance at 10%, 5%, and 1%, respectively. Models 1, 2, and 3 are conditioned on the
project having at least one publication.
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Table 7: Analysis of Research Fit

1 2

(Dummy) ARRA -0.334* -0.446†
(0.145) (0.241)

(Dummy) R01 0.359
(0.228)

ARRA × R01 0.228
(0.290)

Constant 3.204** 2.970**
(0.030) (0.158)

N 8,494 8,494
F -stat 5.34 3.33
Adj. R2 0.63 0.63

Note: FOA-fixed effects are included in all models. Robust
standard errors, clustered by FOA, are in parentheses. †,
*, ** denotes statistical significance at 10%, 5%, and 1%,
respectively.

Table 8: Correlates of ARRA Project Selection

1 2 3
Full R01 R03+R21

(Dummy) Existing PI 0.045** 0.066** -0.006
(0.015) (0.017) (0.030)

# grants for organization -0.002 -0.002 -0.003
(04-08, thousands) (0.003) (0.003) (0.008)

(Log) Total cost 0.044* 0.061* -0.037
(0.022) (0.027) (0.047)

(Log) # of unique authors -0.029** -0.034** 0.001
(0.008) (0.008) (0.017)

Research Fit -0.002 -0.004† 0.002
(0.002) (0.002) (0.003)

Constant -0.305 -0.590† 0.784
(0.279) (0.338) (0.566)

N 8,494 5,557 2,436
F -stat 4.42 6.58 0.20
Adj. R2 0.28 0.17 0.29

Note: All models are conditioned on the project having at least one publication.
Activity-FOA-IC-institution type-year fixed effects are included in all models. Robust
standard errors, clustered by activity-FOA-IC-institution type-year, are in parentheses.
†, *, ** denotes statistical significance at 10%, 5%, and 1%, respectively.
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Appendix: Construction of Research Fit750

Each FOA document starts with “Research Objectives,” which describe the purpose of

the funding opportunity. Two possible inputs for comparison from the project side are

the abstract of the project proposal and abstracts of the publications resulted from the

project. Abstracts of the project proposal are subject to investigators’ deliberate efforts to

make them as close as possible to the FOA objectives in order to increase the chance of755

funding. In contrast, because the abstracts of the publications are in general finalized after

the funding decision, investigators have less incentive to make these abstracts close to the

FOA objectives. Therefore, we choose to use publication abstracts for the comparison with

FOA Research Objectives.

We employ the natural language processing approach to compute the similarity between760

FOA objectives and abstracts (Rehurek and Sojka, 2010; Bird et al., 2009). The term

frequency-inverse document frequency (tf-idf) model is one of the classical vector space

models in natural language processing (Manning et al., 2008). The key idea behind this

model is that the more frequently a particular term appears in a document (i.e., local

property), the more representative the term is of the document. However, if the term765

appears in all documents (i.e., global property), the discerning power of that term should be

lower. In our context, suppose the term “medical” appears many times in an abstract. Then,

we know that the content of the paper is about some medical topics. However, if “medical”

appears in all other FOA objectives and abstracts, this term offers little help in uniquely

identifying the content relative to other abstracts. By balancing between these local and770

global perspectives, we can identify nontrivial characterizing terms from the collection of

FOA objectives and abstracts.

We start by collecting 369 FOA objectives and 29,995 abstracts of publications from the

projects in our sample. After removing English stop words (e.g., a, an, the), we tokenize

each document and create a corpus (i.e., a formatted collection of documents). This cor-775

pus provides us with the global perspective on determining which terms have distinguishing

power. Based on the tf-idf model, we then compute for each project the similarity between

the publication abstracts and the corresponding FOA objectives. When a project has mul-

tiple publications, we take the maximum value of the computed similarities for the project

research fit.780
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